Clarke, SusanAlfaifi, Yahya2024-11-172024Harvardhttps://hdl.handle.net/20.500.14154/73633Artificial Intelligence (AI) has the potential to significantly improve pre-hospital care, especially in emergency medical services (EMS). However, its current application remains scattered, with varying integration levels across care stages. This scoping review aims to map and assess existing research on AI applications within pre-hospital care without focusing on specific AI technologies, such as machine learning (ML), deep learning (DL), or decision support systems (DSS). The review reflects the current research landscape, capturing how AI is utilised across critical stages such as call-taking, dispatch, and on-scene assessment. Using the framework developed by Arksey and O’Malley (2005), a systematic search was conducted across multiple databases to identify studies relevant to AI in pre-hospital care. The scope was deliberately broad to capture a comprehensive view of the available literature, focusing on identifying areas where further research is needed. The findings indicate that DSS is commonly used to support decision-making in call-taking and dispatch, while more advanced AI applications like ML and DL show potential in predictive analytics and real-time decision-making. However, these technologies are still in their early stages of real-world implementation. This review highlights the gaps in AI research, particularly in the later stages of prehospital care, such as transport and handover. Further exploration is necessary to unlock AI’s full potential in enhancing EMS operations and outcomes.104enEMAParamedicpre hospital careAIArtificial intelligenceAmbulance serviceDeep learningIntelligent algorithmMachine learningExploring the Applications of Artificial Intelligence in Enhancing Pre-Hospital Care: A Scoping ReviewThesis