Browsing by Author "Basager, Raghed Tariq Ahmed"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Restricted Enhancing Breast Cancer Diagnosis with ResNet50 Models: A Comparative Study of Dropout Regularization and Early Stopping Techniques(University of Exeter, 2024-09-20) Basager, Raghed Tariq Ahmed; Kelson, Mark; Rowland, SarehEarly detection and treatment of breast cancer depend on accurate image analysis. Deep learning models, particularly Convolutional Neural Networks (CNNs), have proven highly effective in automating this critical diagnostic process. While prior studies have explored CNN architectures [1, 2], there is a growing need to understand the role of dropout regularization and fine-tuning strategies in optimizing these models. This research seeks to improve breast cancer diagnosis by evaluating ResNet50 models trained from scratch and fine-tuned, with and without dropout regularization, using both original and augmented datasets. Assumptions and Limitations: This research assumes that the Kaggle Histopathologic Cancer Detection dataset is representative of real-world clinical images. Limitations include dataset diversity and computational resources, which may affect generalization to broader clinical applications. ResNet50 models were trained on the Kaggle Histopathologic Cancer Detection dataset with various configurations of dropout, early stopping, and data augmentation [3–6]. Performance was assessed using accuracy, precision, recall, F1-score, and AUC-ROC metrics [7, 8]. The best-performing model was a ResNet50 trained from scratch without dropout regularization, achieving a validation accuracy of 97.19%, precision of 96.20%, recall of 96.90%, F1-score of 96.55%, and an AUC-ROC of 0.97. Grad-CAM visualizations offered insights into the model’s decision-making process, enhancing interpretability crucial for clinical use [9,10]. Misclassification analysis showed that data augmentation notably improved classification accuracy, particularly by correcting previously misclassified images [11]. These findings highlight that training ResNet50 without dropout, combined with data augmentation, significantly enhances diagnostic accuracy from histopathological images. Original Contributions: This research offers novel insights by demonstrating that a ResNet50 model without dropout regularization, trained from scratch and with advanced data augmentation techniques, can achieve high diagnostic accuracy and interpretability, paving the way for more reliable AI-powered diagnostics.7 0