SACM - United States of America
Permanent URI for this collectionhttps://drepo.sdl.edu.sa/handle/20.500.14154/9668
Browse
3 results
Search Results
Item Restricted A Deep Learning Framework for Blockage Mitigation in mmWave Wireless(Portland State University, 2024-05-28) Almutairi, Ahmed; Aryafar, EhsanMillimeter-Wave (mmWave) communication is a key technology to enable next generation wireless systems. However, mmWave systems are highly susceptible to blockages, which can lead to a substantial decrease in signal strength at the receiver. Identifying blockages and mitigating them is thus a key challenge to achieve next generation wireless technology goals, such as enhanced mobile broadband (eMBB) and Ultra-Reliable and Low-Latency Communication (URLLC). This thesis proposes several deep learning (DL) frameworks for mmWave wireless blockage detection, mitigation, and duration prediction. First, we propose a DL framework to address the problem of identifying whether the mmWave wireless channel between two devices (e.g., a base station and a client device) is Lineof- Sight (LoS) or non-Line-of-Sight (nLoS). Specifically, we show that existing beamforming training messages that are exchanged periodically between mmWave wireless devices can also be used in a DL model to solve the channel classification problem with no additional overhead. We extend this DL framework by developing a transfer learning model (t-LNCC) that is trained on simulated data and can successfully solve the channel classification problem on any commercial-off-the-shelf (COTS) mmWave device with/without any real-world labeled data. The second part of the thesis leverages our channel classification mechanism from the first part and introduces new DL frameworks to mitigate the negative impacts of blockages. Previous research on blockage mitigation has introduced several model and protocol based blockage mitigation solutions that focus on one technique at a time, such as handoff to a different base station or beam adaptation to the same base station. We go beyond those techniques by proposing DL frameworks that address the overarching problem: what blockage mitigation method should be employed? and what is the optimal sub-selection within that method? To do so, we developed two Gated Recurrent Unit (GRU) models that are trained using periodically exchanged messages in mmWave systems. Specifically, we first developed a GRU model that tackled the blockage mitigation problem in single-antenna clients wireless environment. Then, we proposed another GRU model to expand our investigation to cover more complex scenarios where both base stations and clients are equipped with multiple antennas and collaboratively mitigate blockages. Those two models are trained on datasets that are gathered using a commercially available mmWave simulator. Both models achieve outstanding results in selecting the optimal blockage mitigation method with an accuracy higher than 93% and 91% for single-antenna and multiple-antenna clients, respectively. We also show that the proposed methods significantly increases the amount of transferred data compared to several other blockage mitigation policies.17 0Item Restricted ENSEMBLE MACHINE LEARNING IN SPACE WEATHER ANALYTICS(New Jersey Institute of Technology, 2024) Alobaid, Khalid; Wang, JasonThis dissertation addresses several important space weather problems using ensemble learning techniques. An ensemble method combining multiple machine learning models is often more accurate than the individual machine learning models that form the ensemble method. There are several techniques for constructing an ensemble. With in-depth case studies, the dissertation demonstrates the usefulness and effectiveness of ensemble machine learning for space weather analytics, especially for predicting extreme space weather events such as coronal mass ejections (CMEs). The dissertation begins with an ensemble method for predicting the arrival time of CMEs from the Sun to Earth. The proposed method, named CMETNet, combines classical machine learning algorithms such as support vector regression, random forests, XGBoost and Gaussian process regression, along with a deep convolutional neural network (CNN), to perform multimodal learning. The classical machine learning algorithms are used to learn latent patterns from CME features and background solar wind parameters while the deep CNN is used to learn patterns hidden in CME images where the learned patterns are jointly used to make predictions. Experimental results show that CMETNet outperforms existing models, both machine learning based and physics based. Finally, the dissertation presents a fusion method, named DeepCME, to estimate two important properties of CMEs, namely, CME mass and kinetic energy. The DeepCME method is a fusion of three deep-learning models, namely ResNet, InceptionNet, and InceptionResNet. The fusion model extracts features from Large Angle and Spectrometric Coronagraph (LASCO) C2 images, effectively combining the learning capabilities of the three component models to jointly estimate the mass and kinetic energy of CMEs. To the best of current knowledge, this is the first time that deep learning has been used for CME mass and kinetic energy estimations. DeepCME can help scientists better understand CME dynamics. In conclusion, the dissertation showcases many applications of learning techniques including ensemble learning, deep learning, transfer learning and multimodal learning in space weather analytics. The tools and methods developed from the dissertation will make contributions to the understanding and forecasting of CME dynamics and CME geoeffectiveness.16 0Item Restricted Transforming Medical Image Segmentation with Enhanced U-Net Architectures and Adaptive Transfer Learning(Saudi Digital Library, 2023-05-25) Albishri, Ahmed; Yugyung, LeeMedical imaging has revolutionized healthcare by enabling accurate diagnosis, treatment planning, and monitoring of various diseases. Various modalities, such as computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound, visualize diverse anatomical structures and pathological conditions. However, challenges arise in medical image segmentation due to increasing complexity, variability, noise, artifacts, and scarcity of annotated data. The advent of AI, particularly deep learning with Convolutional Neural Networks (CNNs), has facilitated significant advancements in medical image segmentation. U-Net, a prominent CNN architecture, provides accurate segmentation results with relatively low training samples due to its encoder-decoder structure with skip connections. In addition, transfer learning further mitigates limitations imposed by scarce labeled data. In this thesis, we develop innovative custom U-Net models with advanced building blocks and transfer learning strategies, such as AM-UNet for human brain claustrum segmentation from MRI scans, TLU-Net for organ and tumor segmentation from CT scans, and OCU-Net for oral cancer tissue segmentation from whole slide images (WSI) stained with Hematoxylin and Eosin (H&E). Furthermore, we introduce the "U-Framework", a comprehensive guide in designing and optimizing U-Net models. This framework encompasses key decisions related to architecture, transfer learning, module selection and fine-tuning, and evaluation strategies. Finally, by comparing our models with state-of-the-art approaches on benchmark datasets, we demonstrate their significant potential to contribute to medical image segmentation.30 0