Saudi Cultural Missions Theses & Dissertations
Permanent URI for this communityhttps://drepo.sdl.edu.sa/handle/20.500.14154/10
Browse
1 results
Search Results
Item Restricted INTELLIGENT ROBOTICS WITH DIGITAL-TWIN ALIGNMENT: SEMANTIC NAVIGATION, MANIPULATION, PLANNING, AND HUMAN-TO-ROBOT ACTION TRANSFORMATION(Saudi Digital Library, 2025) Alanazi, Ahmed Hamdan; Lee, YugyungThis dissertation advances AI-empowered indoor robotics through four interconnected contributions that unify navigation, manipulation, semantic planning, and human-to-robot action transformation within a digital-twin-aligned framework. GRIP, a grid-aware semantic navigation module, integrates symbolic scene understanding with hybrid search-and-policy execution to achieve robust and context-aware ObjectNav. PathFormer, a transformer-based manipulation model structured around a 3D spatial--semantic grid, generates smooth, interpretable, and physically consistent trajectories that remain tightly aligned with digital-twin simulation. KG-Transformer, a knowledge-guided semantic planner, leverages a lightweight digital twin to calibrate execution, veto unsafe behaviors, and autonomously repair failing plans across diverse indoor environments. ActionFormer, an action-generation transformer, introduces a unified imitation-learning pipeline that integrates human-activity recognition, human-motion generation, and robot-motion generation. ActionFormer supports more than twenty complex human activities, producing robot-ready demonstrations that generalize across platforms and enable end-to-end imitation learning from video and landmark sequences. Collectively, these contributions establish a coherent foundation for AI-empowered robotics grounded in digital-twin intelligence. Across benchmarks and real-world deployments, GRIP yields up to 9.6\% higher success rate and more than $2\times$ gains in path efficiency (SPL, SAE). PathFormer produces digitally consistent manipulation trajectories validated through robust sim-to-real transfer. KG-Transformer achieves 99.6\% executability, delivers a +4.6-point improvement on unseen-scene tasks, and eliminates safety violations in both simulated and multi-robot execution. ActionFormer attains state-of-the-art performance in human-activity recognition and high execution accuracy across more than 20 activities, generating realistic human-motion traces and corresponding robot-motion trajectories for embodied robotic demonstration. Together, these advances deliver a trustworthy, semantically aligned, and high-performance simulation-to-reality pipeline that significantly enhances the adaptability, reliability, and real-world readiness of autonomous indoor robotic systems.38 0
