Saudi Cultural Missions Theses & Dissertations

Permanent URI for this communityhttps://drepo.sdl.edu.sa/handle/20.500.14154/10

Browse

Search Results

Now showing 1 - 1 of 1
  • ItemRestricted
    Oral biofilm and host-pathogen models: a semi- systematic review and future perspectives
    (University Of Glasgow, 2024-08) Alshehri, Khalid; Brown, Jason
    Abstract Introduction: Oral biofilms, complex microbial communities found on various surfaces within the oral cavity, play a critical role in the development and progression of oral diseases such as dental caries, periodontal diseases, and mucosal infections. Understanding the formation, structure, and pathogenicity of these biofilms is essential for improving prevention and treatment strategies. Aims: This review aims to evaluate recent advancements in the development and application of in vitro multi-species oral biofilm models, with a focus on studies published between January 2019 and July 2024. The review seeks to identify gaps in current research and suggest future directions for enhancing the physiological relevance of these models. Methods: A systematic literature search was conducted in the PubMed database, following PRISMA guidelines. Studies were selected based on predefined inclusion and exclusion criteria, focusing on multi-species biofilm models in vitro. The review analyzed methodologies, findings, and limitations of the selected studies. Findings: The review identified six key studies employing various in vitro models, ranging from continuous flow systems to static models. These studies highlighted the importance of specific microbial interactions, biofilm maturation processes, and the impact of different substrates on biofilm formation. However, limitations were noted in replicating the complexity of the in vivo oral environment, particularly in capturing the dynamic conditions and microbial diversity. Discussion: While significant progress has been made in the development of in vitro biofilm models, challenges remain in creating systems that accurately mimic the oral microenvironment. Advances in microfluidic devices and 'OMICs' technologies offer promising avenues for future research. Additionally, there is a need for long-term studies that better reflect the chronic nature of biofilm-related infections. Conclusion: The development of in vitro models that closely replicate the in vivo conditions of the oral cavity is crucial for advancing our understanding of oral biofilms and their role in disease progression. Future research should focus on integrating advanced technologies and improving model complexity to enhance the predictive value of these systems for clinical applications.
    14 0

Copyright owned by the Saudi Digital Library (SDL) © 2025