Applications of Continuous Flow Reactors Towards Screening Catalytically Active Nanoparticle Syntheses
Abstract
The dissertation presented herein is structured into chapters that delve into various research domains within milli- and microfluidic systems. Part of this dissertation includes collaborative authorship. Chapter 1 introduces the fundamentals of fluid mechanics. In this chapter, some highlights of the important physical phenomena that are dominant in milli- and microscale flow systems are presented, focusing on flow dynamics, diffusion, and computational fluid dynamics simulations. It emphasizes the importance of fluid behavior in microscale systems and introduces a case study on microfluidics applications in biomolecular systems in which a portion of a manuscript I participated in as a third author is presented. Chapter 2 covers applications of continuous flow synthesis of colloidal nanoparticles using milli-and microfluidics systems, highlighting the advantages of miniaturized systems in reaction-based nanoparticle syntheses. Chapter 3 is adapted from a published manuscript in which I am a joint primary author. Chapter 3 describes the use of continuous flow methods for screening the reaction parameters of catalytically active molybdenum carbide nanoparticle synthesis with an emphasis on throughput optimization using a Design of Experiment approach. Chapter 4 introduces machine learning-assisted spectrophotometry, showcasing the integration of machine learning algorithms for the kinetic analysis of ionic liquid-based platinum nanoparticle synthesis. Chapter 5 introduces in-situ characterization for continuous flow reactors with a particular objective of studying the nucleation and growth kinetics of nanoparticle synthesis using X-ray scattering. This chapter provides a critical evaluation of flow reactor designs for in situ X-ray scattering analysis, focusing on the synthesis of ionic liquid-based Pt nanoparticles.
Description
Keywords
continuous flow, millifluidics, microfluidics, machine learning, nanoparticle synthesis