Online conversations: A study of their toxicity

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

University of Illinois Urbana-Champaign

Abstract

Social media platforms are essential spaces for modern human communication. There is a dire need to make these spaces most welcoming and engaging to their participants. A potential threat to this need is the propagation of toxic content in online spaces. Hence, it becomes crucial for social media platforms to detect early signs of a toxic conversation. In this work, we tackle the problem of toxicity prediction by proposing a definition for conversational structures. This definition empowers us to provide a new framework for toxicity prediction. Thus, we examine more than 1.18 million X (made by 4.4 million users), formerly known as Twitter, threads to provide a few key insights about the current state of online conversations. Our results indicated that most of the X threads do not exhibit a conversational structure. Also, our newly defined structures are distributed differently than previously thought of online conversations. Additionally, our definitions give a meaningful sign for models to start predicting the future toxicity of online conversations. We also showcase that message-passing graph neural networks outperform state-of-the-art gradient- boosting trees for toxicity prediction. Most importantly, we find that once we observe the first two terminating conversational structures, we can predict the future toxicity of online threads with ≈88 % accuracy. We hope our findings will help social media platforms better curate content in their spaces and promote more conversations in online spaces.

Description

Keywords

Online Conversations, Graph Neural Networks, Machine Learning, Societal Computing

Citation

Endorsement

Review

Supplemented By

Referenced By

Copyright owned by the Saudi Digital Library (SDL) © 2024