Research on photovolatic dust accumulation degree evaluation method based on PSO-RF algorthim

dc.contributor.advisorjianbo, yi
dc.contributor.authorMadkhali, mohammed ibraheem h
dc.date.accessioned2025-09-11T08:13:23Z
dc.date.issued2025
dc.description.abstract随着全球能源转向可再生能源,光伏发电的高效运行与维护成为研究重点。在沙特阿拉伯等干旱多尘地区,组件积灰严重影响发电效率,现有模型在复杂气候下泛化能力不足。 本文以沙特 Abhur Al Janubiyah 地区为研究对象,提出了一种基于 粒子群优化-随机森林(PSO-RF) 的光伏阵列积灰评估方法,主要研究成果如下: 1. 利用 单二极管模型(SDM) 在 Matlab/Simulink 中建立光伏阵列模型,分析光照与温度对输出特性的影响,并通过 扰动观察法(P&O) 实现最大功率点跟踪(MPPT)。 2. 构建 PSO-RF 积灰评估模型,通过粒子群优化随机森林超参数,提升分类精度与泛化能力。在不同积灰程度(0、15、30 g/m²)下,模型在典型天气条件中的准确率最高达 92.31%,优于传统 RF 模型。 3. 结合沙特气象数据,利用 PVsyst 软件进行区域化仿真,结果表明:PSO-RF 模型在积灰分类中准确率达 94.8%,优于 SVM、XGBoost 等模型,验证了其在复杂气候下的环境适应性。
dc.format.extent77
dc.identifier.citationM. I. H. Madkhali, Dust accumulation assessment on photovoltaic arrays using PSO-RF in arid climates: A case study of Abhur Al Janubiyah, Saudi Arabia, Master’s thesis, School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, 2025.
dc.identifier.urihttps://hdl.handle.net/20.500.14154/76384
dc.language.isoen_US
dc.publisherSaudi Digital Library
dc.subject光伏阵列积灰评估,粒子群优化,随机森林,区域化评估,PVsyst 仿真
dc.titleResearch on photovolatic dust accumulation degree evaluation method based on PSO-RF algorthim
dc.typeThesis
sdl.degree.departmentSchool of Mechanical and Electrical Engineering
sdl.degree.disciplineuniversty of electronic science and technology of china
sdl.degree.grantoruniversty of electronic science and technology of china
sdl.degree.nameMaster of Engineering

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
SACM-Dissertation.pdf
Size:
2.7 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections

Copyright owned by the Saudi Digital Library (SDL) © 2026