Real-time performance evaluation of flooding & recursive time synchronization protocols over Arduino & XBee
No Thumbnail Available
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Saudi Digital Library
Abstract
Time synchronization plays an important role in distributed systems. Distributed wireless sensor networks (WSNs) often require accurate time synchronization for coordination and data reliability. The wireless sensor networks have three ma- jor goals: time synchronization, low bandwidth operation, and energy eciency. Dierent time synchronization algorithms aim to achieve these objectives using various methods.
In this thesis, performance evaluation of two state-of-the-art time synchronization protocols is presented, namely; Flooding Time Synchronization Protocol and Recursive Time Synchronization Protocol. To achieve time synchronization in WSNs, these two protocols make use of dierent mechanisms: broadcast mechanism is used by Flooding Time Synchronization while peer-to-peer communication is used by Recursive Time Synchronization Protocol. As this is a performance evaluation, three performance parameters were set: the synchronization message count per cycle, the bandwidth and convergence time. Both have been veried using Arduino and XBee using various topologies including bus, grid, mesh, and tree. Each protocol performs dierently based on the topology.