3.3KV, MEGAWATT LEVEL MODULAR MULTILEVEL INVERTER FOR HYBRID/FULL ELECTRIC AIRCRAFT

dc.contributor.advisorCao, Dong
dc.contributor.authorDahneem, Ahmed
dc.date.accessioned2024-08-20T06:46:47Z
dc.date.available2024-08-20T06:46:47Z
dc.date.issued2024-08-06
dc.description.abstractHybrid/Full electric aircraft (HEA/FEA) represents an attractive concept due to its potential to reduce CO2 emissions, decrease fossil-fuel consumption, enhance overall aircraft efficiency, and lower operational costs. As technology progresses towards hybrid/full electric aircraft, the development of high-performance motor drive systems becomes imperative. This necessity introduces new constraints, particularly in low-pressure environments. Designing for high-altitude applications requires careful consideration to prevent issues like partial discharge and power system failures in the air. Converters must exhibit ultra-high efficiency, high power density, and exceptional reliability. While wide band-gap devices, such as Silicon-carbide based Metal Oxide Silicon Field Effect Transistors (SiC-MOSFETs), offer improved switching and high-temperature performance over silicon counterparts, their integration into HEA/FEA applications remains challenging. The high switching speed of SiC-MOSFETs reduces switching losses and facilitates the design of high-density inverters. However, selecting suitable devices is critical for designing high-power-rated inverters. Moreover, the risk of partial discharge increases at high voltages in conditions of low air pressure, posing a threat to inverter longevity by compromising system insulation. This thesis evaluates three distinct inverter/converter topologies comprehensively to determine the optimal circuit topology for HEA/FEA applications. The study explores design strategies to ensure busbar integrity, preventing partial discharge without compromising parasitic control. Throughout the thesis, a three-phase megawatt-scale inverter and a 3.3 kV, 288 A power module are designed, fabricated, and tested to validate the proposed design strategies.
dc.format.extent53
dc.identifier.urihttps://hdl.handle.net/20.500.14154/72898
dc.language.isoen_US
dc.publisherUniversity of Dayton
dc.subjecthigh power inverter
dc.subjectMEGAWATT LEVEL inverter
dc.title3.3KV, MEGAWATT LEVEL MODULAR MULTILEVEL INVERTER FOR HYBRID/FULL ELECTRIC AIRCRAFT
dc.title.alternativeMegawatt, 3.3kv High Power Modular Multilevel Inverter for Hybrid/Full Electric Aircraft
dc.typeThesis
sdl.degree.departmentEngineering
sdl.degree.disciplineElectrical Engineering
sdl.degree.grantorDayton
sdl.degree.nameMaster of Science

Files

Copyright owned by the Saudi Digital Library (SDL) © 2024