On learning better decision trees

dc.contributor.authorMuhammad Nauwar Al-Afandi
dc.date1996
dc.date.accessioned2022-05-18T04:21:43Z
dc.date.available2022-05-18T04:21:43Z
dc.degree.departmentCollege of Computer Science and Engineering
dc.degree.grantorKing Fahad for Petrolem University
dc.description.abstractتتبع خوارزمية “ ID3” أسلوب التقسيم من الأعلى إلى الأسفل لبناء شجرات القرار من أمثلة معطاة ، وتولد الخوارزمية شجرات قرار محدودة المثالية كونها تعتمد على احصاءات تقديرية في عملية توليد الشجرات . تعرض في هذه الدراسة أسلوبين جديدين لتحسين مستوى جودة الشجرة المبنية عن طريق تقليل معدل كلفة تصنيف الأمثلة وزيادة مستوى دقة تصنيف الحالات الجديدة . ويسمى الأسلوب الأول أسلوب تعديل الأوزان بينما يسمى الثاني أسلوب التطوير المتتابع . يقوم الأسلوب الأول على أساس اعطاء وزن لكل مثال بقيمة حقيقية موجبة ، ومن ثم تعديل هذا الوزن بشكل متكرر وبطيء ، حيث تتغير القيم التي تحصل عليها السمات أثناء اختيارها ، وبالتالي يتم بناء شجرة قرار أعلى جودة . ومن ناحية أخرى يقوم الأسلوب الثاني على أساس استخدام طريقة جديدة لاختيار السمات ، بحيث يجمع بين فوائد استخدام قيمة الفائدة المعلوماتية المستخدمة في خوارزمية “ ID3 “ والمحسوبة من الأمثلة مع قيمة الأهمية لكل سمة والتي تعتمد على عدد الأمثلة التي تصنفها السمة في الشجرة السابقة . وتشير نتائج التجارب التي تم اجراؤها على كلا الأسلوبين إلا أن أسلوب التطوير المتتابع قد حقق نتائج أكثر أهمية من أسلوب تعديل الأوزان مقارنة مع خوارزمية “ ID3 “ .
dc.identifier.other5118
dc.identifier.urihttps://drepo.sdl.edu.sa/handle/20.500.14154/1112
dc.language.isoen
dc.publisherSaudi Digital Library
dc.thesis.levelMaster
dc.thesis.sourceKing Fahad for Petrolem University
dc.titleOn learning better decision trees
dc.typeThesis

Files

Copyright owned by the Saudi Digital Library (SDL) © 2025