TRENDS IN EXTERNAL RADIATION EXPOSURE AMONG THE U.S NAVY MEDICAL PERSONNEL WORKING IN NUCLEAR MEDICINE DEPARTMENTS FROM 2003 TO 2020
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Saudi Digital Library
Abstract
Objectives: To assess trends in external occupational exposure of nuclear medicine (NM) workers from United States Navy (USN) medical centers from 2003 to 2020 and compare them with previously published data on NM workers from US civilian hospitals. Materials and methods: Analysis of the annual personal dose equivalents, deep dose equivalents Hp(10) (DDE) and shallow dose equivalents Hp(0.07) (skin dose) recorded using the DT-702/PD was conducted on 528 NM personnel working in USN medical centers. Also, analysis of 1,357 annual shallow dose equivalents Hp(0.07) (extremity dose) recorded using DXT-RAD was conducted on 285 NM workers. The data used in the study was provided by the United States Navy Dosimetry Center (NDC). Summary statistics of the distributions of annual and cumulative DDE, skin doses and extremity doses are provided in this study. Annual doses of nuclear medicine personnel working in Navy hospitals/clinics that perform PET imaging besides general nuclear medicine studies were identified using publicly available websites’ information, analyzed and compared with those who work in nuclear medicine facilities that perform only general NM studies. Doses from the two groups were compared using a two-sample t-test with 95% confidence interval. Results: Median annual doses of 0.38 mSv (IQR, 0.05-1.27 mSv; mean, 0.82 mSv), 0.37 mSv (IQR, 0.06 – 1.22 mSv; mean = 0.80 mSv), and 2.89 mSv (IQR = 0.76 – 7.86 mSv; mean = 6.65 mSv) for the DDE, skin dose and extremity dose, respectively, were observed in 2003–2020. Median cumulative DDE, skin dose and extremity dose over 2003–2020 were 0.39 mSv (IQR = 0.05 – 3.18 mSv; mean = 2.96 mSv) and 0.39 mSv (IQR = 0.05 – 3.08 mSv; mean = 2.90 mSv), and 13.0 mSv (IQR =2.89 – 38.5 mSv; mean = 31.6 mSv), respectively. Median annual DDE, skin and extremity doses to workers from identified PET facilities were 0.44 mSv (IQR= 0.06 – 1.60 mSv; mean = 0.99 mSv), 0.42 mSv (IQR = 0.06 – 1.58 mSv; mean = 0.97 mSv) and 3.16 mSv (IQR = 0.73 – 9.51 mSv; mean = 8.74 mSv), respectively, against 0.29 mSv (IQR = 0.06 – 0.95 mSv; mean = 0.65 mSv), 0.30 mSv (IQR =0.06 – 0.95 mSv; mean = 0.63 mSv) and 2.52 mSv (IQR = 0.76 – 6.19 mSv; mean = 4.72 mSv) to workers from non-PET facilities. The resultant p-value (p<0.05) of the two-sample t-test showed a significant difference between doses to NM workers from PET vs. non-PET facilities. Conclusions: All assessed values of the DDE, skin and extremity doses were well below the annual occupational limits established by the International Commission on Radiological Protection. The median annual DDE to NM workers in the USN was lower than NM radiological technologists from US civilian hospitals. Our study’s mean annual skin dose was lower than NM technologists and NM physicians in Kuwait and NM technologists in Saudi Arabia. Moreover, our study's mean annual extremity dose was half the lowest extremity exposure recorded among NM workers in Serbia. As expected, working in PET facilities was associated with increased radiation doses. This study provided new data useful for future exposure assessment in this population of radiation workers and improved radiation protection programs in medical centers.