Detection of high impedance faults using artificial neural networks
dc.contributor.author | MOHAMMAD HASAN AL- MUBARAK | |
dc.date | 2001 | |
dc.date.accessioned | 2022-05-18T04:14:37Z | |
dc.date.available | 2022-05-18T04:14:37Z | |
dc.degree.department | College of Engineering Sciences and Applied Engineering | |
dc.degree.grantor | King Fahad for Petrolem University | |
dc.description.abstract | حتى وقتنا الحاضر ، ما تزال شركات الكهرباء تعاني من صعوبة اكتشاف الأعطال الكهربائية ذات المقاومة العالية ، التي تتعرض لها الخطوط الهوائية لشبكات التوزيع . مثل هذه الأعطال غالباً ما تحدث نتيجة سقوط الموصلات العارية في الخطوط الهوائية وملامستها للأرض عبر مسار ذو مقاومة عالية . وغالباً ما ينتج عن هذا النوع من الأعطال تيار ضئيل يصعب اكتشافه بواسطة أجهزة الحماية الاعتيادية المستخدمة لكشف التيارات العالية . وعندما تبقى هذه الأعطال دون كشف ، فإنها تشكل خطراً على حياة الناس الذين يعيشون بالقرب منها ، وهذا هو الدافع الرئيس لتطوير أجهزة قادرة على اكتشاف مثل هذه الأعطال . وقد أظهرت أجهزة الكشف المبنية على تقنية الشبكات العصبية نجاحاً كبيراً في حل هذه المشكلة . هذه الرسالة تعرض تصميماً جديداً يستخدم شبكة عصبية متعددة الطبقات ، للكشف عن الأعطال الكهربائية ذات المقاومة العالية ، عن طريق تحليل موجات التيار والجهد المسجلة عند قضيب الجهد 13.8 ك.ف في المحطة الفرعية . ويستطيع هذا التصميم أن يحدد وجود العطل من عدمه ، إضافة إلى تحديد مكان العطل ، والطور المعطل ؛ والأهم من ذلك كله قدرة هذا التصميم على التمييز بين العطل والأحداث المشابهة له ، مثل إضافة الأحمال الاعتيادية ، بدرجة عالية من الدقة . وقد تم اختيار جميع مكونات الخط الهوائي المستخدمة في المحاكاة على أساس تلك المستخدمة في خط هوائي نموذجي في شبكة التوزيع الكهربائية للشركة السعودية للكهرباء – فرع المنطقة الشرقية . | |
dc.identifier.other | 5496 | |
dc.identifier.uri | https://drepo.sdl.edu.sa/handle/20.500.14154/977 | |
dc.language.iso | en | |
dc.publisher | Saudi Digital Library | |
dc.thesis.level | Master | |
dc.thesis.source | King Fahad for Petrolem University | |
dc.title | Detection of high impedance faults using artificial neural networks | |
dc.type | Thesis |