Design, Synthesis, and Catalytic Application of Crystalline Porous Nanomaterials
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Saudi Digital Library
Abstract
Chapter 1: COFs (covalent organic frameworks) are a new type of microporous crystalline polymer connected by organic units via strong covalent bonds. Due to their well-defined crystalline structures and excellent chemical and thermal stabilities, COF materials are considered promising candidates in applications such as gas adsorption, catalysis, and energy
storage.
Chapter 2: A new covalent organic framework (COF) based on imine bonds was assembled from 2-(4-formylphenyl)-5-formylpyridine and 1,3,6,8-tetrakis(4-aminophenyl)pyrene, which showed an interesting dual-pore structure with high crystallinity. Postmetallation of the COF with Pt occurred selectively at the N donor (imine and pyridyl) in the larger pores. The metalated COF served as an excellent recyclable heterogeneous photocatalyst for decarboxylative difluoroalkylation and oxidative cyclization reactions.
Chapter 3: We describe the design and synthesis of highly stable and irreversible amine-linked COFs. The proposed amine linkage is prepared via irreversible nucleophilic aromatic substitution reactions (SNAr) of 5,10,15,20-tetrakis(perfluorophenyl)porphyrin (TPPF20) L1 with ethane-1,2- diamine L2,1,4-phenylenedimethanamine L3, or cta(3-aminopropyl) silsesquioxanehydrochloride (OAS-POSS) L4 to form COF-21, XYCOF, and SiCOF, respectively. Post-metalation of COF- 21 with iron led to FeClCOF-21, in which its model K1 displayed excellent catalytic performance towards a tandem catalytic synthesis of 2-phenyl-1H-benzo[d]imidazole.