On the Construction of Z2 × Z2- graded Lie colour algebras via Klein operators

dc.contributor.advisorIsaac, Phillip
dc.contributor.advisorGould, Mark
dc.contributor.authorAlmutairi, Alhanouf Mubarak B
dc.date.accessioned2023-11-22T09:35:05Z
dc.date.available2023-11-22T09:35:05Z
dc.date.issued2023-11-17
dc.description.abstractIn this thesis, we study the structure and representation theory of certain colour Lie algebras. Precisely, we determine the existence of Z2 × Z2- graded colour variants of the Lie algebra gl(n) inside the quantum group Uq(gl(n)) in the limit as q → −1. This general linear algebra is realised via the Klein operators arising in the limit. Then, we study Z2 × Z2- graded colour embeddings of q-Schro ̈dinger algebra d = 1 in the limit q → −1, using previously developed methods.
dc.format.extent111
dc.identifier.urihttps://hdl.handle.net/20.500.14154/69796
dc.language.isoen
dc.publisherSaudi Digital Library
dc.subjectColour Lie algebras
dc.subjectpartition function
dc.subjectalgebraic embedding
dc.subjectNon-semisimple Lie algebra
dc.subjectquantum groups
dc.subjectdifferential operator realisations
dc.subjectKlein operators
dc.subjecttensor representation
dc.subjectq- Schrodinger algebra.
dc.titleOn the Construction of Z2 × Z2- graded Lie colour algebras via Klein operators
dc.typeThesis
sdl.degree.departmentMathematics and Physics
sdl.degree.disciplineMathematical Physics
sdl.degree.grantorThe University of Queensland
sdl.degree.nameDoctor of Philosophy
sdl.thesis.sourceSACM - Australia

Files

Collections

Copyright owned by the Saudi Digital Library (SDL) © 2025