Developing Real-time Corrosion Monitoring: A Cutting-Edge Fusion of Electrochemical Noise Data and Machine Learning Techniques

dc.contributor.advisorKaterina Lepkova and Chris Aldrich
dc.contributor.authorAbdulmutaali, Ahmed
dc.date.accessioned2025-07-31T06:31:58Z
dc.date.issued2024-12-20
dc.descriptionThe research thesis is now available on Curtin University's institutional repository, espace, under embargo until 18/06/2027. You can access the thesis at https://hdl.handle.net/20.500.11937/98063.
dc.description.abstractThe study addresses effectively monitoring and controlling the corrosion process using electrochemical noise analysis in different scenarios. It explores the challenges in feature extraction and analytical methods. It also proposes novel systematic approaches to overcome these challenges using deep learning models such as stochastic neighbour embedding (t-SNE) and principal component analysis (PCA). This work provides a potential quantification analysis method for online corrosion monitoring and control, widely considered the industry standard.
dc.format.extent206
dc.identifier.citationA. Abdulmutaali, Developing Real-time Corrosion Monitoring: A Cutting-Edge Fusion of Electrochemical Noise Data and Machine Learning Techniques. Curtin University, 2024.
dc.identifier.issnoai:espace.curtin.edu.au:20.500.11937/98063 http://hdl.handle.net/20.500.11937/98063
dc.identifier.urihttps://hdl.handle.net/20.500.14154/76048
dc.language.isoen
dc.publisherCurtin University
dc.subjectCarbon steels
dc.subjectdeep learning approach
dc.subjectDiscrete Wavelet Transform
dc.subjectElectrochemical noise
dc.subjectLocalized corrosion
dc.subjectonline corrosion monitoring
dc.subjectwavelet scalograms
dc.subjectwavelet transform analysis
dc.subjectProcess monitoring
dc.titleDeveloping Real-time Corrosion Monitoring: A Cutting-Edge Fusion of Electrochemical Noise Data and Machine Learning Techniques
dc.typeThesis
sdl.degree.departmentWASM: Minerals, Energy and Chemical Engineering
sdl.degree.disciplineChemical Engineering
sdl.degree.grantorCurtin University
sdl.degree.namePhD
sdl.thesis.sourceSACM - Australia

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
SACM-Dissertation.pdf
Size:
8.37 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections

Copyright owned by the Saudi Digital Library (SDL) © 2025