Neural network based nonlinear blind equalization schmes for high order M-ary QAM signals.
dc.contributor.author | Shafayat Abrar | |
dc.date | 2000 | |
dc.date.accessioned | 2022-05-18T06:11:50Z | |
dc.date.available | 2022-05-18T06:11:50Z | |
dc.degree.department | College of Engineering Sciences and Applied Engineering | |
dc.degree.grantor | King Fahad for Petrolem University | |
dc.description.abstract | تناقش هذه الرسالة بعض الأساليب لتحسين نظم المعادلة العمياء الموجهة باستخدام الشبكات العصبية . في البداية : تم اشتقاق خوارزمية الانتشار الخلفي المركب لخوارزمية المقياس الثابت المعدل ثنائي الكيفية ، ولجعلها تعمل مع بنية الشبكات العصبية تم تقديم معامل الكسب لتفادي القيم الصغرى المحلية . كما تم اقتراح نظام ثنائي الكيفية ، والذي يمكنه التحويل من الكيفية العمياء إلى الكيفية الموجهة دون الحاجة إلى معامل الكسب . كما تم مناقشة بعض الخوارزميات المعـادلة العـمياء الموجهة الجديدة . ثانياً : تم اقتراح خوارزمية قف واذهب متكيفة لإعطاء قدرة تعقب أفضل . ثالثاً : تم اقتراح فكرة استخدام دالتي تفعيل متتاليتين في العصب الخارجي من أجل الحصول على ارتباط أفضل بين الجزء الحقيقي ، والجزء الخيالي من البيانات الخارجة ، وأيضاً للحصول على متوسط مربع خطأ أقل في الحالة المستقرة . رابعاً : تم تكييف الطبقية الغير خطية لدالة التفعيل ، وذلك بناء على طاقة الخطأ لإعطاء تقارب سريع ، وتحسين الاتزان . أخيراً تم اشتقاق نظام قف واذهب الموجهة المعتمد على أقل مربع تكراري لنية الملاحظ المتعدد الطبقات ذو القيمة المركبة . ولقد أظهرت النظم المقترحة نتائج ممتازة بمحاكاتها على قنوات ذو قيمة مركبة لنبضات M-ary QAM . | |
dc.identifier.other | 5031 | |
dc.identifier.uri | https://drepo.sdl.edu.sa/handle/20.500.14154/2208 | |
dc.language.iso | en | |
dc.publisher | Saudi Digital Library | |
dc.thesis.level | Master | |
dc.thesis.source | King Fahad for Petrolem University | |
dc.title | Neural network based nonlinear blind equalization schmes for high order M-ary QAM signals. | |
dc.type | Thesis |