SACM - United Kingdom
Permanent URI for this collectionhttps://drepo.sdl.edu.sa/handle/20.500.14154/9667
Browse
2 results
Search Results
Item Restricted Modeling the Adsorption Behavior of Carbon Dioxide on Zeolites(Queen Mary University of London, 2024-08) Alturaiki, Ahmed; Shah, RazaThe increasing level of carbon dioxide in the atmosphere caused by fossil fuels consumption has incredibly contributed to climate change. Considering this issue requires a reduction in carbon dioxide emissions and developments in carbon capture technologies. Zeolites have been widely used as adsorbents in separation processes. The study of carbon dioxide adsorption behavior on zeolites has been significantly focused on due to its importance in carbon capture and storage applications due to their properties. The CO2 adsorption capacity and selectivity in zeolite are high which makes it a promising material to be utilized in separating CO2 from gas mixtures. This study investigates the adsorption behavior of zeolites 13X and 4A using molecular simulations. This experiment employs Grand Canonical Monte Carlo (GCMC) simulations to model CO2 adsorption behavior under varying conditions, integrating Coulomb and Lennard- Jones potentials to demonstrate particle interactions. Key aspects such as breakthrough curves, adsorption isotherms and the influence of pore size and cation exchange are discussed. Results indicate that zeolite 13X has a better CO2 adsorption performance compared to zeolite 4A. This research aims to provide insights into optimizing zeolite materials to be more cost-effective, efficient, and sustainable CO2 capture technologies in order to contribute to mitigating global warming.11 0Item Restricted Recent Advancements in Graphene Oxide Adsorbents for Wastewater Treatment(Saudi Digital Library, 2023-10-02) Alyami, Hussain Hadi; Tahir, Asif; Roy, AnuragThe rapid increase in the world's population, alongside accelerated industrial expansion and the profound impacts of climate change, is intensifying the global water scarcity crisis. Graphene oxide (GO) and its varied composites play a pivotal role in wastewater purification, attributed to their superior adsorptive, oxidative, and catalytic properties. This review highlights the advances in hybrid graphene-based membrane materials, specifically engineered for water purification, addressing the growing demand for potable water. Intrinsically, graphene and GO and their composites boast a considerable pore volume, outstanding conductivity, diverse surface chemistry, and a remarkable aspect ratio. These attributes position them as ideal agents for the adsorption and catalysis of organic pollutants from wastewater. Notably, the sheet-like, resonant, polyaromatic π-system inherent in graphene derivatives facilitates critical interactions with organic pollutants, be it π–π stacking, hydrogen bonding, or electrostatic interactions. Such pollutants span from dyes and pharmaceutical by products to a spectrum of agricultural and industrial effluents. Many of these pollutants possess reactive unsaturated aromatic structures and abundant oxygen-rich functional groups. Numerous studies have meticulously analyzed the adsorption capacities of these pollutants, often framed within the context of established adsorption isotherm models such as Langmuir and Freundlich. Likewise, kinetic models, determinative factors, and the reusability of adsorbents have been thoroughly investigated. However, there's a noticeable gap in comprehensive dialogues comparing graphene-based membranes to other hybrid counterparts. Deepening our understanding of these graphene-infused membranes is crucial, marking a new paradigm in graphene applications. It is projected that upcoming research endeavors will further scrutinize and perfect the fabrication techniques of these cutting-edge graphene membranes, catalyzing more innovations in the sector.21 0