SACM - United Kingdom

Permanent URI for this collectionhttps://drepo.sdl.edu.sa/handle/20.500.14154/9667

Browse

Search Results

Now showing 1 - 2 of 2
  • ItemRestricted
    Rasm: Arabic Handwritten Character Recognition: A Data Quality Approach
    (University of Essex, 2024) Alghamdi, Tawfeeq; Doctor, Faiyaz
    The problem of AHCR is a challenging one due to the complexities of the Arabic script, and the variability in handwriting (especially for children). In this context, we present ‘Rasm’, a data quality approach that can significantly improve the result of AHCR problem, through a combination of preprocessing, augmentation, and filtering techniques. We use the Hijja dataset, which consists of samples from children from age 7 to age 12, and by applying advanced preprocessing steps and label-specific targeted augmentation, we achieve a significant improvement of a CNN performance from 85% to 96%. The key contribution of this work is to shed light on the importance of data quality for handwriting recognition. Despite the recent advances in deep learning, our result reveals the critical role of data quality in this task. The data-centric approach proposed in this work can be useful for other recognition tasks, and other languages in the future. We believe that this work has an important implication on improving AHCR systems for an educational context, where the variability in handwriting is high. Future work can extend the proposed techniques to other scripts and recognition tasks, to further improve the optical character recognition field.
    50 0
  • ItemRestricted
    Enhancing Breast Cancer Diagnosis with ResNet50 Models: A Comparative Study of Dropout Regularization and Early Stopping Techniques
    (University of Exeter, 2024-09-20) Basager, Raghed Tariq Ahmed; Kelson, Mark; Rowland, Sareh
    Early detection and treatment of breast cancer depend on accurate image analysis. Deep learning models, particularly Convolutional Neural Networks (CNNs), have proven highly effective in automating this critical diagnostic process. While prior studies have explored CNN architectures [1, 2], there is a growing need to understand the role of dropout regularization and fine-tuning strategies in optimizing these models. This research seeks to improve breast cancer diagnosis by evaluating ResNet50 models trained from scratch and fine-tuned, with and without dropout regularization, using both original and augmented datasets. Assumptions and Limitations: This research assumes that the Kaggle Histopathologic Cancer Detection dataset is representative of real-world clinical images. Limitations include dataset diversity and computational resources, which may affect generalization to broader clinical applications. ResNet50 models were trained on the Kaggle Histopathologic Cancer Detection dataset with various configurations of dropout, early stopping, and data augmentation [3–6]. Performance was assessed using accuracy, precision, recall, F1-score, and AUC-ROC metrics [7, 8]. The best-performing model was a ResNet50 trained from scratch without dropout regularization, achieving a validation accuracy of 97.19%, precision of 96.20%, recall of 96.90%, F1-score of 96.55%, and an AUC-ROC of 0.97. Grad-CAM visualizations offered insights into the model’s decision-making process, enhancing interpretability crucial for clinical use [9,10]. Misclassification analysis showed that data augmentation notably improved classification accuracy, particularly by correcting previously misclassified images [11]. These findings highlight that training ResNet50 without dropout, combined with data augmentation, significantly enhances diagnostic accuracy from histopathological images. Original Contributions: This research offers novel insights by demonstrating that a ResNet50 model without dropout regularization, trained from scratch and with advanced data augmentation techniques, can achieve high diagnostic accuracy and interpretability, paving the way for more reliable AI-powered diagnostics.
    17 0

Copyright owned by the Saudi Digital Library (SDL) © 2025