Saudi Cultural Missions Theses & Dissertations
Permanent URI for this communityhttps://drepo.sdl.edu.sa/handle/20.500.14154/10
Browse
4 results
Search Results
Item Restricted Cloud Cybersecurity(Universidad de Al cala, 2024) Bokhari, Nabil; Herraiz, Martinez; Javier, JoseThe rapid evolution of cloud computing has revolutionized modern business operations, from hosting applications to storing data in high-security environments. Competitive businesses are leveraging cloud computing solutions to maximize the benefits, including cost-effectiveness, flexibility, and scalability. Cloud computing enables enterprises to access on-demand and scalable computing resources, specifically computational power and vast data storage. Despite the immense benefits, the security of data transmitted and stored in a cloud computing environment is vulnerable to multiple cybersecurity attacks, including data manipulation, loss, and theft. The study aims to develop a security model for enhanced data privacy and security in the cloud by leveraging a hybrid of cryptographic algorithms and steganography image-based techniques. The security model innovatively combines Advanced Encryption Standard (AES), Rivest Shamir Adleman (RSA), and the Least Significant Bit (LSB) technique to enhance data privacy and security of data in motion in a cloud computing environment. The three-step security model was designed, developed, and evaluated using the Design Science Research (DSR) methodology. The model secures data through cryptographic algorithms, adds an extra security layer using steganography, and implements backup and data recovery. The methodology was selected because of its practicality and philosophical underpinnings on addressing contemporary challenges by developing novel and relevant artifacts using scientifically rigorous procedures. The findings show that a hybrid of cryptography and steganography provides unbeatable security for data in a cloud computing environment. Implementing the security model will enhance data privacy and security in the cloud by revolutionizing how data is encrypted and decrypted. In the future, the integration of Machine Learning and Artificial Intelligence methodologies and algorithms will quadruple the effectiveness and robustness of this data security model for the cloud.11 0Item Restricted Cubic Curves and Cryptography(Saudi Digital Library, 2023-08-09) Alfurhud, Azzam; Hirschfeld, JamesThesis in Cubic Curves and Cryptography11 0Item Restricted Advancing Scalability, Efficiency, and Storage Optimization in Blockchain for Mobile Internet of Things (mIoT) Applications(2023) Zangoti, Hussein; Pissinou, Niki; Iyengar, Sundaraja Sitharama; Pan, Deng; Bobadilla, Leonardo; Andrian, Jean; Khan, Wazir ZadaThe increasing adoption of blockchain technology in mobile Internet of Things (mIoT) networks requires the development of blockchain systems that are efficient, scalable, and optimized for resource utilization. While several studies have attempted to address these challenges, comprehensive solutions that adapt to the inherent mobility of mIoT systems are still lacking. This Ph.D. thesis investigates three innovative methods to advance the current blockchain model for mIoT systems. First, a novel k-dimensional spatiotemporal, multidimensional, graph-based blockchain structure is introduced to address network partitioning issues caused by the mobility of IoT devices. This unique structure effectively manages blockchain nodes as they move between cell areas, resulting in smaller independent peer-to-peer subnetworks, each with its own blockchain copy. Experimental results demonstrate improved scalability and efficiency, with logarithmic growth as the blockchain size increases. Furthermore, the longest chain length is reduced by over 99.99% compared to traditional chain-based structures, making blockchain operations such as block appending or management more efficient. Building upon the multidimensional blockchain foundation, the next stage of this research involves developing an efficient merging algorithm for graph-based or multidimensional blockchains in mIoT networks. This algorithm addresses the challenge of merging partitioned blockchains that contain similar or identical blocks, which often require significant time and computational resources during the merging process. By leveraging depth-first search and Merkle tree techniques, the merging algorithm minimizes the time and computational resources spent on identical blocks, resulting in a 72% reduction in merging time compared to algorithms that do not handle block similarity. Lastly, considering the limited storage capacity of mIoT systems, this thesis presents a novel Collective Signing-Based Blockchain Storage Optimization (CSBSO) model aimed at minimizing storage overhead in resource-constrained mIoT systems. The model utilizes the existing Collective Signing (CoSi) protocol to reduce storage requirements and leverages a multidimensional blockchain structure for efficient block management and retrieval. The storage optimization approach identifies and prunes the most irrelevant blocks based on the CoSi protocol. Evaluations using real-world datasets, such as the Ethereum Classic Blockchain and Facebook users datasets, demonstrate that the CSBSO model outperforms state-of-the-art storage optimization models, achieving approximately 92% storage space savings. These results underscore the potential of CoSi-based storage optimization in effectively reducing blockchain storage overhead in resource-limited applications.26 0Item Restricted Lightweight Cryptographic Mechanisms for Internet of Things and Embedded Systems(2023-03) Bin Rabiah, Abdulrahman; Abu-Ghazaleh, Nael; Richelson, SilasToday, IoT devices such as health monitors and surveillance cameras are widespread. As the industry matures, IoT systems are becoming pervasive. This revolution necessitates further research in network security, as IoT systems impose constraints on network design due to the use of lightweight, computationally weak devices with limited power and network connectivity being used for varying and unique applications. Thus, specialized secure protocols which can tolerate these constraints are needed. This dissertation examines three problems in the constrained IoT setting: 1) Key exchange, 2) Authentication and 3) Key management. First, IoT devices often gather critical information that needs to be communicated in a secure manner. Authentication and secure communication in an IoT environment can be difficult because of constraints, in computing power, memory, energy and network connectivity. For secure communication with the rest of the network, an IoT device needs to trust the gateway through which it communicates, often over a wireless link. An IoT device needs a way of authenticating the gateway and vice-versa, to set up that secure channel. We introduce a lightweight authentication and key exchange system for IoT environments that is tailored to handle the IoT-imposed constraints. In our system, the gateway and IoT device communicate over an encrypted channel that uses a shared symmetric session key which changes periodically (every session) in order to ensure perfect forward secrecy. We combine both symmetric-key and public-key cryptography based authentication and key exchange, thus reducing the overhead of manual configuration. We study our proposed system, called Haiku, where keys are never exchanged over the network. We show that Haiku is lightweight and provides authentication, key exchange, confidentiality, and message integrity. Haiku does not need to contact a Trusted Third Party (TTP), works in disconnected IoT environments, provides perfect forward secrecy, and is efficient in compute, memory and energy usage. Haiku achieves 5x faster key exchange and at least 10x energy consumption reductions. Second, signature-based authentication is a core cryptographic primitive essential for most secure networking protocols. We introduce a new signature scheme, MSS, that allows a client to efficiently authenticate herself to a server. We model our new scheme in an offline/online model where client online time is premium. The offline component derives basis signatures that are then composed based on the data being signed to provide signatures efficiently and securely during run-time. MSS requires the server to maintain state and is suitable for applications where a device has long-term associations with the server. MSS allows direct comparison to hash chain-based authentication schemes used in similar settings, and is relevant to resource-constrained devices e.g., IoT. We derive MSS instantiations for two cryptographic families, assuming the hardness of RSA and decisional Diffie-Hellman (DDH) respectively, demonstrating the generality of the idea. We then use our new scheme to design an efficient time-based one-time password (TOTP) system. Specifically, we implement two TOTP authentication systems from our RSA and DDH instantiations. We evaluate the TOTP implementations on Raspberry Pis which demonstrate appealing gains: MSS reduces authentication latency and energy consumption by a factor of ∼82 and 792, respectively, compared to a recent hash chain-based TOTP system. Finally, we examine an important sub-component of the massive IoT technology, namely connected vehicles (CV)/Internet of Vehicles (IoV). In the US alone, the US department of transportation approximates the number of vehicles to be around 350 million. Connected vehicles is an emerging technology, which has the potential to improve the safety and efficiency of the transportation system. To maintain the security and privacy of CVs, all vehicle-to-vehicle (V2V) communications are typically established on top of pseudonym certificates (PCs) which are maintained by a vehicular public key infrastructure (VPKI). However, the state-of-the-art VPKIs (including SCMS; the US VPKI standard for CV) often overlooked the reliability constraint of wireless networks (which eventually degrades the VPKI security) that exists in high-mobility environments such as CV networks. This constraint stems from the short coverage time between an on-board unit (OBU) inside a fast moving vehicle and a stationary road-side unit (RSU). In this work, we present TVSS, a novel VPKI design that pushes critical VPKI operations to the edge of the network; the RSU, while maintaining all security and privacy assumptions in the state-of-the-art VPKIs. Our real-life testbed shows a reduced PC generation latency by 28.5x compared to recent VPKIs. Furthermore, our novel local pseudonym certificate revocation lists (PCRLs) achieves 13x reduction in total communication overhead for downloading them compared to delta PCRLs.32 0