Saudi Cultural Missions Theses & Dissertations
Permanent URI for this communityhttps://drepo.sdl.edu.sa/handle/20.500.14154/10
Browse
2 results
Search Results
Item Restricted Advancing Emergency Department Efficiency, Infectious Disease Management at Mass Gatherings, and Self-Efficacy Through Data Science and Dynamic Modeling(Virginia Polytechnic Institute and State University, 2024-02-27) Ba-Aoum, Mohammed; Hosseinichimeh, Niyousha; Triantis, KonstantinosThis dissertation employs management systems engineering principles, data science, and industrial systems engineering techniques to address pressing challenges in emergency department (ED) efficiency, infectious disease management at mass gatherings, and student self-efficacy. It is structured into three essays, each contributing to a distinct domain of research, and utilizes industrial and systems engineering approaches to provide data-driven insights and recommend solutions. The first essay used data analytics and regression analysis to understand how patient length of stay (LOS) in EDs could be influenced by multi-level variables integrating patient, service, and organizational factors. The findings suggested that specific demographic variables, the complexity of service provided, and staff-related variables significantly impacted LOS, offering guidance for operational improvements and better resource allocation. The second essay utilized system dynamics simulations to develop a modified SEIR model for modeling infectious diseases during mass gatherings and assessing the effectiveness of commonly implemented policies. The results demonstrated the significant collective impact of interventions such as visitor limits, vaccination mandates, and mask wearing, emphasizing their role in preventing health crises. The third essay applied machine learning methods to predict student self-efficacy in Muslim societies, revealing the importance of socio-emotional traits, cognitive abilities, and regulatory competencies. It provided a basis for identifying students with varying levels of self-efficacy and developing tailored strategies to enhance their academic and personal success. Collectively, these essays underscore the value of data-driven and evidence-based decision- making. The dissertation’s broader impact lies in its contribution to optimizing healthcare operations, informing public health policy, and shaping educational strategies to be more culturally sensitive and psychologically informed. It provides a roadmap for future research and practical applications across the healthcare, public health, and education sectors, fostering advancements that could significantly benefit society.27 0Item Restricted Predicting Paid Certification in Massive Open Online Courses(Durham University, 2024-02-08) Alshehri, Mohammad Abdullah; Cristea, AlexandraMassive open online courses (MOOCs) have been proliferating because of the free or low-cost offering of content for learners, attracting the attention of many stakeholders across the entire educational landscape. Since 2012, coined as “the Year of the MOOCs”, several platforms have gathered millions of learners in just a decade. Nevertheless, the certification rate of both free and paid courses has been low, and only about 4.5–13% and 1–3%, respectively, of the total number of enrolled learners obtain a certificate at the end of their courses. Still, most research concentrates on completion, ignoring the certification problem, and especially its financial aspects. Thus, the research described in the present thesis aimed to investigate paid certification in MOOCs, for the first time, in a comprehensive way, and as early as the first week of the course, by exploring its various levels. First, the latent correlation between learner activities and their paid certification decisions was examined by (1) statistically comparing the activities of non-paying learners with course purchasers and (2) predicting paid certification using different machine learning (ML) techniques. Our temporal (weekly) analysis showed statistical significance at various levels when comparing the activities of non-paying learners with those of the certificate purchasers across the five courses analysed. Furthermore, we used the learner’s activities (number of step accesses, attempts, correct and wrong answers, and time spent on learning steps) to build our paid certification predictor, which achieved promising balanced accuracies (BAs), ranging from 0.77 to 0.95. Having employed simple predictions based on a few clickstream variables, we then analysed more in-depth what other information can be extracted from MOOC interaction (namely discussion forums) for paid certification prediction. However, to better explore the learners’ discussion forums, we built, as an original contribution, MOOCSent, a cross- platform review-based sentiment classifier, using over 1.2 million MOOC sentiment-labelled reviews. MOOCSent addresses various limitations of the current sentiment classifiers including (1) using one single source of data (previous literature on sentiment classification in MOOCs was based on single platforms only, and hence less generalisable, with relatively low number of instances compared to our obtained dataset;) (2) lower model outputs, where most of the current models are based on 2-polar classifier (positive or negative only); (3) disregarding important sentiment indicators, such as emojis and emoticons, during text embedding; and (4) reporting average performance metrics only, preventing the evaluation of model performance at the level of class (sentiment). Finally, and with the help of MOOCSent, we used the learners’ discussion forums to predict paid certification after annotating learners’ comments and replies with the sentiment using MOOCSent. This multi-input model contains raw data (learner textual inputs), sentiment classification generated by MOOCSent, computed features (number of likes received for each textual input), and several features extracted from the texts (character counts, word counts, and part of speech (POS) tags for each textual instance). This experiment adopted various deep predictive approaches – specifically that allow multi-input architecture - to early (i.e., weekly) investigate if data obtained from MOOC learners’ interaction in discussion forums can predict learners’ purchase decisions (certification). Considering the staggeringly low rate of paid certification in MOOCs, this present thesis contributes to the knowledge and field of MOOC learner analytics with predicting paid certification, for the first time, at such a comprehensive (with data from over 200 thousand learners from 5 different discipline courses), actionable (analysing learners decision from the first week of the course) and longitudinal (with 23 runs from 2013 to 2017) scale. The present thesis contributes with (1) investigating various conventional and deep ML approaches for predicting paid certification in MOOCs using learner clickstreams (Chapter 5) and course discussion forums (Chapter 7), (2) building the largest MOOC sentiment classifier (MOOCSent) based on learners’ reviews of the courses from the leading MOOC platforms, namely Coursera, FutureLearn and Udemy, and handles emojis and emoticons using dedicated lexicons that contain over three thousand corresponding explanatory words/phrases, (3) proposing and developing, for the first time, multi-input model for predicting certification based on the data from discussion forums which synchronously processes the textual (comments and replies) and numerical (number of likes posted and received, sentiments) data from the forums, adapting the suitable classifier for each type of data as explained in detail in Chapter 7.16 0