Saudi Cultural Missions Theses & Dissertations

Permanent URI for this communityhttps://drepo.sdl.edu.sa/handle/20.500.14154/10

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemRestricted
    Towards Energy-Efficient Residential Buildings in Jeddah, Saudi Arabia: Exploring Energy Retrofitting Options and Assessing Their Feasibility.
    (Delft University of Technology, 2024) Felimban, Ahmed; Ulrich, Knaack
    The thesis investigates the energy retrofitting of existing residential buildings in the Kingdom of Saudi Arabia (KSA), the building sector responsible for a significant proportion of the nation's energy consumption. The research introduces a comprehensive methodology tailored for the unique architectural and social contexts of KSA, aimed at significantly improving energy efficiency and thereby aiding the country in achieving its net-zero emissions target for 2060. Utilizing a case study, the methodology incorporates a detailed analysis of energy performance, identifies suitable retrofitting measures, and evaluates their cost-effectiveness. The study extends beyond the technical aspects of energy retrofitting to address its social relevance. It posits that implementing such measures can lead to substantial energy savings, improved indoor comfort, and superior housing quality. These interventions can also foster greater societal awareness of energy efficiency, counteracting the primary factors contributing to increased electricity costs. Despite the manifold benefits, the research identifies potential resistance from residents, which could arise from heightened expectations of energy upgrade providers. Interestingly, this reluctance may serve as a catalyst for providers to improve the quality of their products and services, ultimately enhancing market standards for energy-efficient solutions. Furthermore, the thesis argues that energy retrofitting could stimulate job creation and elevate the status of architectural specialties, thereby supporting broader economic development and social well-being. The thesis concludes by recommending that state decision-makers actively incentivize energy retrofitting to harvest its multitude of benefits, from enhancing energy efficiency to contributing to economic growth and sustainable development. The proposed methodology offers a robust framework for stakeholders, paving the way for a more energy-efficient, economically viable, and socially responsible residential building sector in KSA.
    26 0
  • Thumbnail Image
    ItemRestricted
    Machine Learning Empowered Resource Allocation for NOMA Enabled IoT Networks
    (Saudi Digital Library, 2023-12-20) Alajmi, Abdullah Saad; Nallanathan, Arumugam
    The Internet of things (IoT) is one of the main use cases of ultra massive machine type communications (umMTC), which aims to connect large-scale short packet sensors or devices in sixth-generation (6G) systems. This rapid increase in connected devices requires efficient utilization of limited spectrum resources. To this end, non-orthogonal multiple access (NOMA) is considered a promising solution due to its potential for massive connectivity over the same time/frequency resource block (RB). The IoT users’ have the characteristics of different features such as sporadic transmission, high battery life cycle, minimum data rate requirements, and different QoS requirements. Therefore, keeping in view these characteristics, it is necessary for IoT networks with NOMA to allocate resources more appropriately and efficiently. Moreover, due to the absence of 1) learning capabilities, 2) scalability, 3) low complexity, and 4) long-term resource optimization, conventional optimization approaches are not suitable for IoT networks with time-varying communication channels and dynamic network access. This thesis provides machine learning (ML) based resource allocation methods to optimize the long-term resources for IoT users according to their characteristics and dynamic environment. First, we design a tractable framework based on model-free reinforcement learning (RL) for downlink NOMA IoT networks to allocate resources dynamically. More specifically, we use actor critic deep reinforcement learning (ACDRL) to improve the sum rate of IoT users. This model can optimize the resource allocation for different users in a dynamic and multi-cell scenario. The state space in the proposed framework is based on the three-dimensional association among multiple IoT users, multiple base stations (BSs), and multiple sub-channels. In order to find the optimal resources solution for the maximization of sum rate problem in network and explore the dynamic environment better, this work utilizes the instantaneous data rate as a reward. The proposed ACDRL algorithm is scalable and handles different network loads. The proposed ACDRL-D and ACDRL-C algorithms outperform DRL and RL in terms of convergence speed and data rate by 23.5\% and 30.3\%, respectively. Additionally, the proposed scheme provides better sum rate as compare to orthogonal multiple access (OMA). Second, similar to sum rate maximization problem, energy efficiency (EE) is a key problem, especially for applications where battery replacement is costly or difficult to replace. For example, the sensors with different QoS requirements are deployed in radioactive areas, hidden in walls, and in pressurized pipes. Therefore, for such scenarios, energy cooperation schemes are required. To maximize the EE of different IoT users, i.e., grant-free (GF) and grant-based (GB) in the network with uplink NOMA, we propose an RL based semi-centralized optimization framework. In particular, this work applied proximal policy optimization (PPO) algorithm for GB users and to optimize the EE for GF users, a multi-agent deep Q-network where used with the aid of a relay node. Numerical results demonstrate that the suggested algorithm increases the EE of GB users compared to random and fixed power allocations methods. Moreover, results shows superiority in the EE of GF users over the benchmark scheme (convex optimization). Furthermore, we show that the increase in the number of GB users has a strong correlation with the EE of both types of users. Third, we develop an efficient model-free backscatter communication (BAC) approach with simultaneously downlink and uplink NOMA system to jointly optimize the transmit power of downlink IoT users and the reflection coefficient of uplink backscatter devices using a reinforcement learning algorithm, namely, soft actor critic (SAC). With the advantage of entropy regularization, the SAC agent learns to explore and exploit the dynamic BAC-NOMA network efficiently. Numerical results unveil the superiority of the proposed algorithm over the conventional optimization approach in terms of the average sum rate of uplink backscatter devices. We show that the network with multiple downlink users obtained a higher reward for a large number of iterations. Moreover, the proposed algorithm outperforms the benchmark scheme and BAC with OMA in terms of sum rate, self-interference coefficients, noise levels, QoS requirements, and cell radii.
    23 0
  • Thumbnail Image
    ItemRestricted
    تقييم خيارات خفض انبعاثات غازات الدفيئة من الطاقة الكهربائية المستهلكة بالقطاع السكني في المملكة العربية السعودية: دراسة حالة منطقة القصيم
    (Saudi Digital Library, 2021) Alharbi, Maryam Mohsen Johim; Alsabbagh, Maha Mahmood
    يستهلك القطاع السكني النسبة الأكبر من إجمالي الطاقة الكهربائية المنتجة بمنطقة القصيم والتي تعتمد في إنتاجها على الوقود الأحفوري. تهدف الدراسة إلى تقييم مدى فاعلية مجموعة من الخيارات المتاحة في خفض الطلب النهائي على الطاقة الكهربائية من القطاع السكني بالقصيم وما يتبع ذلك من انبعاثات لغازات الدفيئة. ولتحقيق هذا الهدف تم استخدام برنامج تحليل الانبعاثات المنخفضة (LEAP) لإعداد السيناريو المرجعي وسيناريوهات التخفيف المختلفة خلال الفترة 2018 – 2030 وذلك بالاعتماد على نتائج مسح الطاقة المنزلي. وتم دراسة مدى فاعلية خيارات تحسين كفاءة أجهزة التكييف، وتركيب الألواح الشمسية بالمساكن، واستخدام سخانات المياه الشمسية، ورفع الوعي لدى الأسر في خفض الطلب النهائي على الطاقة الكهربائية وذلك بصورة سيناريوهات منفردة ومجتمعة. توضح نتائج الدراسة أنه، وبحسب نتائج مسح الطاقة المنزلي، فإن الطلب النهائي على الطاقة الكهربائية سيواصل الارتفاع ليبلغ نحو 12.4 ألف جيجاوات ساعة في عام 2030، في حين ستصل انبعاثات ثاني أكسيد الكربون إلى 7.4 مليون طن من ثاني أكسيد الكربون. وتوضح نتائج النمذجة الاحتمالية أن الطلب النهائي على الطاقة الكهربائية من القطاع السكني في القصيم سيتراوح ما بين 6.5 و19.5 ألف جيجاوات ساعة وذلك بنسبة ثقة تبلغ 90%، في حين أن الحد الأدنى للطلب هو 4.8 والحد الأعلى هو 32.8 ألف جيجاوات ساعة في عام 2030 وذلك بالاعتماد على نتائج مسح الطاقة المنزلي. كما تشير النتائج إلى أن خيار استبدال جميع أجهزة التكييف الشباك والمنفصلة بأجهزة تكييف منفصلة ذات كفاءة استهلاك عالية للطاقة هو الأكثر فعالية في خفض الطلب على الطاقة الكهربائية وذلك بنحو 24 ألف جيجاوات ساعة، بالإضافة إلى خفض الانبعاثات بنحو 14 مليون طن من ثاني أكسيد الكربون، أي ما نسبته 14.6% مقارنة بالسيناريو المرجعي. ويمكن تحقيق خفض تراكمي أعلى في الطلب النهائي على الطاقة الكهربائية والانبعاثات وذلك بنسبة 19% عند تطبيق هذه الخيارات بصورة مجتمعة وذلك بما يصل إلى 31 ألف جيجاوات ساعة و19 مليون طن من ثاني أكسيد الكربون خلال الفترة 2022-2030 مقارنة بالسيناريو المرجعي. توصي الدراسة بتقييم جدوى تطبيق خيارات التخفيف وتحديد الخيارات المتاحة لنماذج التمويل المقترحة. كما توصي أيضاً بجمع المزيد من المعلومات المتعلقة بنمط استهلاك الطاقة الكهربائية في القطاع السكني وذلك لضمان الإفادة من نتائج مسح الطاقة المنزلي في تقييم السياسات المتعلقة بالطاقة وتغير المناخ في القطاع السكني.
    186 0

Copyright owned by the Saudi Digital Library (SDL) © 2025