IS THE METAVERSEFAILING? ANALYSINGSENTIMENTS TOWARDSTHEMETAVERSE

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

The University of Manchester

Abstract

This dissertation investigates Aspect-Based Sentiment Analysis (ABSA) within the context of the Metaverse to better understand opinions on this emerging digital environment, particularly from a news perspective. The Metaverse, a virtual space where users can engage in various experiences, has attracted both positive and negative opinions, making it crucial to explore these sentiments to gain insights into public perspectives. A novel dataset of news articles related to the Metaverse was created, and Target Aspect-Sentiment Detection (TASD) models were applied to analyze sentiments ex pressed toward various aspects of the Metaverse, such as device performance and user privacy. A key contribution of this research is the evaluation of the TASD architecture, TAS-BERT, and its enhanced version, Advanced TAS-BERT (ATAS-BERT), which performs each task separately, on two datasets: the newly created Metaverse dataset and the SemEval15 Restaurant dataset. They were tested with different Transformer based models, including BERT, DeBERTa, RoBERTa, and ALBERT, to assess performance, particularly in cases where the target is implicit. The findings demonstrate the ability of advanced Transformer models to handle complex tasks, even when the target is implicit. ALBERT performed well on the simpler Metaverse dataset, while DeBERTa and RoBERTa showed superior performance on both datasets. This dissertation also suggests several areas for improvement in future research, such as processing paragraphs instead of individual sentences, utilizing Meta AI models for dataset annotation to enhance accuracy, and designing architectures specifically for models like DeBERTa, RoBERTa, and ALBERT, rather than relying on architectures originally designed for BERT, to improve performance. Additionally, incorporating enriched context representations, such as Part-of-Speech tags, could further enhance model performance.

Description

Keywords

NLP, AI, Sentiment analysis, Metaverse

Citation

Manal Alharbi. Is the Metaverse Failing? Analysing Sentiments Towards the Metaverse. Master of Science Dissertation, Department of Computer Science, University of Manchester, 2024.

Endorsement

Review

Supplemented By

Referenced By

Copyright owned by the Saudi Digital Library (SDL) © 2024