BIOMASS-DERIVED GRAPHENE OXIDE (GO) SUPPORTED - METAL-ORGANIC FRAMEWORK (MOF) POLYANILINE- BASED NANOCOMPOSITE FOR THE REMOVAL OF HEAVY METALS IONS (Pb 2+, Ni 2+) IN WATER

dc.contributor.advisorIbrahim, Mohamad
dc.contributor.advisorShahadat, Mohamad
dc.contributor.authorAlshammeri, Thamer Naif K
dc.date.accessioned2024-10-13T06:01:31Z
dc.date.issued2024-09
dc.description.abstractThe global concern of contamination of heavy metals in water sources is significant. Industrial effluents, which contain pollutants, are released into water sources, hence increasing the probability of heavy metal toxicity in both humans and aquatic organisms. The current investigation focuses on developing a GO/PANI/MOF nanocomposite adsorbent. This nanocomposite is designed to effectively adsorb heavy metal ions (Pb2+ and Ni2+) from synthetic sample. The existence of functional groups, the material's crystallinity property, thermal stability, and surface area, were assessed using several techniques. Specifically, Fourier Transform Infrared Spectroscopy (FTIR) was utilized to identify functional groups, while X-ray diffraction (XRD) was employed to assess the material's crystalline structure, and thermal stability was assessed by thermogravimetric analysis (TGA). Scanning Electron Microscopy (SEM) was used to examine surface morphology. The current study investigated the different physiochemical parameters such as, adsorbent dose, contacting time, heavy metal ion concentration, pH, and temperature influence the adsorption of heavy metal ions. The GO/PANI/MOF-based nanocomposite was employed as an effective adsorbent for removing Pb²⁺ and Ni²⁺ ions. The GO/PANI/MOF-based nanocomposite showed its excellent efficiency at a pH of 6, with a dosage of adsorbent of 50 mg and a starting concentration of metal ions of 60 ppm for Pb2+ and 45 ppm for Ni2+ , respectively, at room temperature (25±2 °C). The equilibrium time required for Pb2+ was 90 min and 120 min for Ni2+. The optimum capacity for adsorption for Pb2+ was determined to be 50 mg/g and 42 mg/g for Ni2+. Furthermore, kinetic, isotherms, and thermodynamics studies were also investigated. This was observed in synthetic water sample. The GO/PANI/MOF nanocomposite has a high capacity for removing heavy metal ions from wastewater, making it a promising option for successful treatment. Keywords: Adsorption, wastewater treatment, GO/PANI/MOF nanocomposite, water pollution.
dc.format.extent93
dc.identifier.urihttps://hdl.handle.net/20.500.14154/73201
dc.language.isoen
dc.publisherUniversiti Sains Malaysia
dc.subjectAdsorption
dc.subjectwastewater treatment
dc.subjectGO/PANI/MOF nanocomposite
dc.subjectwater pollution.
dc.titleBIOMASS-DERIVED GRAPHENE OXIDE (GO) SUPPORTED - METAL-ORGANIC FRAMEWORK (MOF) POLYANILINE- BASED NANOCOMPOSITE FOR THE REMOVAL OF HEAVY METALS IONS (Pb 2+, Ni 2+) IN WATER
dc.typeThesis
sdl.degree.departmentSchool of Chemical Sciences
sdl.degree.disciplinewater treatment, Analytical Chemistry
sdl.degree.grantorUniversiti Sains Malaysia
sdl.degree.nameMASTER OF SCIENCE (CHEMICAL INSTRUMENTATION)

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
SACM-Dissertation.pdf
Size:
1.9 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections

Copyright owned by the Saudi Digital Library (SDL) © 2024