Structural basis for the roles of single and double Holliday Junctions formed from Human telomeric Nucleic Acids (HJTNA)

Thumbnail Image

Date

2024-04-28

Journal Title

Journal ISSN

Volume Title

Publisher

Univeristy College London

Abstract

Background: Telomeres, nucleoprotein complexes at chromosome ends, are crucial for genomic stability. Cancer cells maintain telomere length via telomerase or alternative lengthening of telomeres (ALT). The ALT pathway, observed in 15% of cancers, involves recombination and employs Holliday junction intermediates. These 4-way DNA motifs are dynamic structures influenced by cations, particularly Magnesium (Mg²⁺), leading to conformational changes. Aims: This study aims to explore Holliday junction stability and mobility in the context of ALT, focusing on the impact of G-rich sequences. Leveraging single-molecule Förster resonance energy transfer (smFRET) and X-ray crystallography, we aim to understand the influence of varying Mg²⁺ ion concentrations on the Holliday junctions. Additionally, we investigate protein-Holliday junction complexes and assess the role of Mg²⁺ ions in proteinDNA binding affinity. Methodology: smFRET and X-ray crystallography have been employed to study Holliday junction structures. Microscale thermophoresis (MST) quantified protein-DNA binding affinity at different Mg²⁺ ion concentrations. T4 endonuclease VII, T7 endonuclease I, and the WRWYRGGRYWRW peptide were tested for their affinity under varying Mg²⁺ conditions. Results and Conclusions: The results highlight the direct influence of Mg²⁺ ions on Holliday junction stability. Protein-DNA binding affinity was observed through MST, with T4 endonuclease VII, T7 endonuclease I, and the WRWYRGGRYWRW peptide exhibiting persistent affinity at lower Mg²⁺ concentrations. However, affinity diminished at higher concentrations. smFRET analysis provided insights into branch migration rates across diverse Mg²⁺ ion conditions, suggesting a potential strategy for targeting ALT-positive cancer cells by stabilizing Holliday junction conformation. This study offers valuable insights into the ALT mechanism.

Description

Keywords

DNA, HOLLIDAY JUNCTION, ALT PATHWAY

Citation

Endorsement

Review

Supplemented By

Referenced By

Copyright owned by the Saudi Digital Library (SDL) © 2025