Algorithms design for improving homecare using Electrocardiogram (ECG) signals and Internet of Things (IoT)

Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Saudi Digital Library

Abstract

Due to the fast growing of population, a lot of hospitals get crowded from the huge amount of patients visits. Moreover, during COVID-19 a lot of patients prefer staying at home to minimize the spread of the virus. The need for providing care to patients at home is essential. Internet of Things (IoT) is widely known and used by different fields. IoT based homecare will help in reducing the burden upon hospitals. IoT with homecare bring up several benefits such as minimizing human exertions, economical savings and improved efficiency and effectiveness. One of the important requirement on homecare system is the accuracy because those systems are dealing with human health which is sensitive and need high amount of accuracy. Moreover, those systems deal with huge amount of data due to the continues sensing that need to be processed well to provide fast response regarding the diagnosis with minimum cost requirements. Heart is one of the most important organ in the human body that requires high level of caring. Monitoring heart status can diagnose disease from the early stage and find the best medication plan by health experts. Continues monitoring and diagnosis of heart could exhaust caregivers efforts. Having an IoT heart monitoring model at home is the solution to this problem. Electrocardiogram (ECG) signals are used to track heart condition using waves and peaks. Accurate and efficient IoT ECG monitoring at home can detect heart diseases and save human lives. As a consequence, an IoT ECG homecare monitoring model is designed in this thesis for detecting Cardiac Arrhythmia and diagnosing heart diseases. Two databases of ECG signals are used; one online which is old and limited, and another huge, unique and special from real patients in hospital. The raw ECG signal for each patient is passed through the implemented Low Pass filter and Savitzky Golay filter signal processing techniques to remove the noise and any external interference. The clear signal in this model is passed through feature extraction stage to extract number of features based on some metrics and medical information along with feature extraction algorithm to find peaks and waves. Those features are saved in the local database to apply classification on them. For the diagnosis purpose a classification stage is made using three classification ways; threshold values, machine learning and deep learning to increase the accuracy. Threshold values classification technique worked based on medical values and boarder lines. In case any feature goes above or beyond these ranges, a warning message appeared with expected heart disease. The second type of classification is by using machine learning to minimize the human efforts. A Support Vector Machine (SVM) algorithm is proposed by running the algorithm on the features extracted from both databases. The classification accuracy for online and hospital databases was 91.67% and 94% respectively. Due to the non-linearity of the decision boundary, a third way of classification using deep learning is presented. A full Multilayer Perceptron (MLP) Neural Network is implemented to improve the accuracy and reduce the errors. The number of errors reduced to 0.019 and 0.006 using online and hospital databases. While using hospital database which is huge, there is a need for a technique to reduce the amount of data. Furthermore, a novel adaptive amplitude threshold compression algorithm is proposed. This algorithm is able to make diagnosis of heart disease from the reduced size using compressed ECG signals with high level of accuracy and low cost. The extracted features from compressed and original are similar with only slight differences of 1%, 2% and 3% with no effects on machine learning and deep learning classification accuracy without the need for any reconstructions. The throughput is improved b

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By

Copyright owned by the Saudi Digital Library (SDL) © 2025