Diagnosis of Oral and maxillofacial cysts using artificial intelligence: a literature review

dc.contributor.advisorYong, Sin
dc.contributor.authorAlmohawis, Alhaitham
dc.date.accessioned2024-11-19T06:07:34Z
dc.date.issued2024
dc.descriptionPromising technology in detecting oral cysts
dc.description.abstractAbstract Oral and maxillofacial cysts are cavities that can pose significant risks if not detected and treated promptly. Many of these cysts are asymptomatic, often going unnoticed until complications arise. The introduction of artificial intelligence (AI) presents a promising opportunity for early detection and management of these cysts. Aim: To explore current studies on the use of artificial intelligence in diagnosing oral and maxillofacial cysts. Objectives: To examine the existing literature in this field, assess the accuracy, effectiveness, and limitations of AI models, and identify challenges in implementing AI in clinical practice. Methods: This literature review followed a systematic approach, identifying 223 studies from PUBMED and SCOPUS databases between 1975 and 2024. After applying inclusion and exclusion criteria, 26 retrospective cohort studies were included in the final analysis. A risk of bias assessment was conducted using the ROBINS I tool. Results: The investigation revealed that AI models consistently demonstrate high accuracy in detecting oral cysts in both radiographs and digital histopathology. The ROBINS I tool indicated a moderate risk of bias in most of the included studies. Notable limitations include limited datasets, variable data quality, and a lack of explainability in AI models results. Conclusion: AI models have shown considerable effectiveness and speed in detecting both simple and complex cysts. However, to fully leverage AI's potential in clinical settings, further rigorous studies are needed to evaluate its risks, benefits, and feasibility, ensuring compliance with governmental health regulations on AI.
dc.format.extent94
dc.identifier.citationHarvard style
dc.identifier.urihttps://hdl.handle.net/20.500.14154/73652
dc.language.isoen
dc.publisherUniversity of Manchester
dc.subjectOral cysts
dc.subjectArtificial Intelligence
dc.subjectDeep learning
dc.subjectMachine learning
dc.subjectOral lesions
dc.subjectDiagnosis
dc.subjectDetection
dc.titleDiagnosis of Oral and maxillofacial cysts using artificial intelligence: a literature review
dc.typeThesis
sdl.degree.departmentFaculty of Biology, Medicine and Health
sdl.degree.disciplineOral and maxillofacial surgery
sdl.degree.grantorUniversity of Manchester
sdl.degree.nameMaster of Science in Oral and Maxillofacial surgery

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
SACM-Dissertation.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed to upon submission
Description:

Copyright owned by the Saudi Digital Library (SDL) © 2025