Non-Hyperbolic Points of 2-D Discrete (DE) Homogeneous Polynomial Systems
No Thumbnail Available
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Let ๐(0,0) be an isolated equilibrium point of the two-dimensional (2D) discrete system:
'
๐ฅ#$% = ๐ฅ# + โ๐&(๐ฅ#, ๐ฆ#) ,
๐ฆ#$% = ๐ฆ# + โ๐&(๐ฅ, ๐ฆ) (1)
where ๐&(๐ฅ, ๐ฆ),๐&(๐ฅ, ๐ฆ) are homogenous polynomials of order ๐ โฅ 1
๐&( ๐ฅ, ๐ฆ) =3๐&'(,( ๐ฅ#
&'(๐ฆ#
(
&
(+,
๐&( ๐ฅ, ๐ฆ) =3๐&'(,( ๐ฅ#
&'(๐ฆ#
(
&
(+,
for some integer ๐ โฅ 1 and ๐&'(,( , ๐&'(,( โ โ, ๐ = 0,โฆ,๐. Assume โ is a small positive constant, and,
๐(0,0) = ๐(0,0) = 0.
We can consider (1) to be the Eulerโs approximation of the ODE system