Non-Hyperbolic Points of 2-D Discrete (DE) Homogeneous Polynomial Systems

No Thumbnail Available

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Let ๐‘‚(0,0) be an isolated equilibrium point of the two-dimensional (2D) discrete system: ' ๐‘ฅ#$% = ๐‘ฅ# + โ„Ž๐‘ƒ&(๐‘ฅ#, ๐‘ฆ#) , ๐‘ฆ#$% = ๐‘ฆ# + โ„Ž๐‘„&(๐‘ฅ, ๐‘ฆ) (1) where ๐‘ƒ&(๐‘ฅ, ๐‘ฆ),๐‘„&(๐‘ฅ, ๐‘ฆ) are homogenous polynomials of order ๐‘š โ‰ฅ 1 ๐‘ƒ&( ๐‘ฅ, ๐‘ฆ) =3๐‘&'(,( ๐‘ฅ# &'(๐‘ฆ# ( & (+, ๐‘„&( ๐‘ฅ, ๐‘ฆ) =3๐‘ž&'(,( ๐‘ฅ# &'(๐‘ฆ# ( & (+, for some integer ๐‘š โ‰ฅ 1 and ๐‘&'(,( , ๐‘ž&'(,( โˆˆ โ„, ๐‘˜ = 0,โ€ฆ,๐‘š. Assume โ„Ž is a small positive constant, and, ๐‘ƒ(0,0) = ๐‘„(0,0) = 0. We can consider (1) to be the Eulerโ€™s approximation of the ODE system

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By

Copyright owned by the Saudi Digital Library (SDL) ยฉ 2025