Non-Hyperbolic Points of 2-D Discrete (DE) Homogeneous Polynomial Systems

dc.contributor.advisorFaina Berezovskaya
dc.contributor.authorSAUD FAHAD MOHANA ALDOSARY
dc.date2021
dc.date.accessioned2022-06-01T10:31:39Z
dc.date.available2022-06-01T10:31:39Z
dc.degree.departmentMathematics
dc.degree.grantorHoward University
dc.description.abstractLet ๐‘‚(0,0) be an isolated equilibrium point of the two-dimensional (2D) discrete system: ' ๐‘ฅ#$% = ๐‘ฅ# + โ„Ž๐‘ƒ&(๐‘ฅ#, ๐‘ฆ#) , ๐‘ฆ#$% = ๐‘ฆ# + โ„Ž๐‘„&(๐‘ฅ, ๐‘ฆ) (1) where ๐‘ƒ&(๐‘ฅ, ๐‘ฆ),๐‘„&(๐‘ฅ, ๐‘ฆ) are homogenous polynomials of order ๐‘š โ‰ฅ 1 ๐‘ƒ&( ๐‘ฅ, ๐‘ฆ) =3๐‘&'(,( ๐‘ฅ# &'(๐‘ฆ# ( & (+, ๐‘„&( ๐‘ฅ, ๐‘ฆ) =3๐‘ž&'(,( ๐‘ฅ# &'(๐‘ฆ# ( & (+, for some integer ๐‘š โ‰ฅ 1 and ๐‘&'(,( , ๐‘ž&'(,( โˆˆ โ„, ๐‘˜ = 0,โ€ฆ,๐‘š. Assume โ„Ž is a small positive constant, and, ๐‘ƒ(0,0) = ๐‘„(0,0) = 0. We can consider (1) to be the Eulerโ€™s approximation of the ODE system
dc.identifier.urihttps://drepo.sdl.edu.sa/handle/20.500.14154/57326
dc.language.isoen
dc.titleNon-Hyperbolic Points of 2-D Discrete (DE) Homogeneous Polynomial Systems
sdl.thesis.levelDoctoral
sdl.thesis.sourceSACM - United States of America

Files

Copyright owned by the Saudi Digital Library (SDL) ยฉ 2025