Non-Hyperbolic Points of 2-D Discrete (DE) Homogeneous Polynomial Systems
dc.contributor.advisor | Faina Berezovskaya | |
dc.contributor.author | SAUD FAHAD MOHANA ALDOSARY | |
dc.date | 2021 | |
dc.date.accessioned | 2022-06-01T10:31:39Z | |
dc.date.available | 2022-06-01T10:31:39Z | |
dc.degree.department | Mathematics | |
dc.degree.grantor | Howard University | |
dc.description.abstract | Let ๐(0,0) be an isolated equilibrium point of the two-dimensional (2D) discrete system: ' ๐ฅ#$% = ๐ฅ# + โ๐&(๐ฅ#, ๐ฆ#) , ๐ฆ#$% = ๐ฆ# + โ๐&(๐ฅ, ๐ฆ) (1) where ๐&(๐ฅ, ๐ฆ),๐&(๐ฅ, ๐ฆ) are homogenous polynomials of order ๐ โฅ 1 ๐&( ๐ฅ, ๐ฆ) =3๐&'(,( ๐ฅ# &'(๐ฆ# ( & (+, ๐&( ๐ฅ, ๐ฆ) =3๐&'(,( ๐ฅ# &'(๐ฆ# ( & (+, for some integer ๐ โฅ 1 and ๐&'(,( , ๐&'(,( โ โ, ๐ = 0,โฆ,๐. Assume โ is a small positive constant, and, ๐(0,0) = ๐(0,0) = 0. We can consider (1) to be the Eulerโs approximation of the ODE system | |
dc.identifier.uri | https://drepo.sdl.edu.sa/handle/20.500.14154/57326 | |
dc.language.iso | en | |
dc.title | Non-Hyperbolic Points of 2-D Discrete (DE) Homogeneous Polynomial Systems | |
sdl.thesis.level | Doctoral | |
sdl.thesis.source | SACM - United States of America |