Investigation of the deterministic and stochastic waves for some nonlinear partial differential equations with their applications
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Saudi Digital Library
Abstract
This thesisfocusesonthestudyofnonlinearstochasticmodels,particularlythosearis-
ing inmathematicalphysics.Stochasticmodelinghasbecomeincreasinglyessentialin
understanding real-worldphenomena,whereuncertaintyplaysacrucialrole.Unlike
deterministic models,stochasticmodelspreservealltypesofuncertaintiesandprovide
more realisticsimulations.Theworkpresentedinthisthesisinvestigatestheimpactof
stochasticeffectsonnonlinearevolutionequations,withaspecificfocusonthe unstable
nonlinear Schr¨odingerequation(UNLSE) and othernonlinearwavemodels.
Variousmathematicaltechniquesareemployedtoderiveanalyticalsolutionsforthese
stochasticmodels.The RB sub-ODEmethod and He’s semi-inversetechnique
are appliedtoobtainexactsolutionsfornonlinearwaveequationsundertheinfluenceof
randomness. Thestochasticnatureoftheseequationsisexploredusingdifferenttypes
of randomvariables,including Laplace andGumbeldistributions. Additionally,
simulationsareprovidedtovisualizethebehavioroftheobtainedsolutionsunderdifferent
parameter settings
Chapter 1:Introduction
This chapterintroducesfundamentalconceptsrelatedtorandomvariables,stochastic
processes,andBrownianmotion,alongwithkeystatisticaldistributionsusedinthe
thesis. Ithighlightsthesignificantadvancementsinappliedmathematicsoverthelast
fiftyyears,particularlyinenergy-relatedapplications,whichhavedriventhedevelop-
mentofsophisticatedcomputingtechniques.Thechapteremphasizestheimportanceof
nonlinear partialdifferentialequations(NPDEs)inmodelingvariousnaturalphenomena
across multiplescientificdisciplines,includingsolidstatephysics,quantummechanics,
and chemicalphysics.Italsodiscussestheroleoffirst,second,andthird-orderNPDEs
in modelingnonlinearwaves,diffusionprocesses,anddispersivewavemotion.Addition-
ally,thechapterintroducessolitarywavesandsolitons,explainingtheirsignificancein
understanding complexphysicalsystems.Thediscussionsetsthefoundationforfurther
exploration ofstochasticnonlinearpartialdifferentialequations(SNPDEs),aimingto
modelreal-worldsystemswithgreateraccuracy..
Chapter 2:MathematicalMethods
This chapterintroducesthefundamentalconceptsofstochasticmodelinganditssignif-
icance innonlinearsystems.Itdiscussesthenecessityofusingstochasticratherthan
deterministic approachestostudynonlinearmodels,astheyaccountforuncertainties
more effectively.Thechapteralsoprovidesanoverviewof Brownianmotion, whichis
a keystochasticprocess,anditsapplicationsinphysics,chemistry,andengineering.Ad-ditionally,itintroducesthestochasticunstablenonlinearSchr¨odingerequation(UNLSE)
and outlinesthemainobjectivesofthisthesis.
Chapter 3:AnalyticalSolutionsforNonlinearWaveEquations
This chapterfocusesonanalyticalmethodsforsolvingnonlinearwaveequations.The
RB sub-ODEtechnique is appliedtoobtainexactsolutionsforthe cubic Boussinesq
equation and the modifiedequal-width(MEW)equation. Thesemodelsdescribe
long wavesinshallowwaterandwavepropagationinnonlineardispersivemedia,respec-
tively.Theobtainedsolutionsincludesoliton,periodic,andrationalwaveforms,which
are visualizedusingtwo-andthree-dimensionalgraphs.
Chapter 4:StochasticNonlinearSchr¨odingerEquations
This chapterexplorestheimpactofstochasticperturbationsonthenonlinearSchr¨odinger
equation (NLSE).TheUNLSEisstudiedundertheinfluenceof additivenoise and
uncertaintyinitsparameters.Thechapterpresentsvariousnumericalandanalytical
methodsusedinrecentresearchonstochasticNLSEs.Inaddition,thesignificanceofthe
Laplace andGumbelrandomvariablesinmodelinguncertaintyisdiscussed.
Chapter 5:StochasticSolutionsforUNLSE
This chapterapplies He’s semi-inversetechnique to solvethestochasticUNLSE.
Examines theinfluenceofrandomnessonsolitarywavepropagation,consideringboth
Laplace andGumbelrandomvariables. Themeanoftheserandomsolutionsis
calculated andnumericalsimulationsareprovidedtoillustratethestochasticbehaviorof
the system.Thefindingshighlighttheadvantagesoftheproposedapproachinreducing
computational complexitywhileobtainingaccuratesolutions.
Description
This thesisfocusesonthestudyofnonlinearstochasticmodels,particularlythosearis-
ing inmathematicalphysics.Stochasticmodelinghasbecomeincreasinglyessentialin
understanding real-worldphenomena,whereuncertaintyplaysacrucialrole.Unlike
deterministic models,stochasticmodelspreservealltypesofuncertaintiesandprovide
more realisticsimulations.Theworkpresentedinthisthesisinvestigatestheimpactof
stochasticeffectsonnonlinearevolutionequations,withaspecificfocusonthe unstable
nonlinear Schr¨odingerequation(UNLSE) and othernonlinearwavemodels.
Variousmathematicaltechniquesareemployedtoderiveanalyticalsolutionsforthese
stochasticmodels.The RB sub-ODEmethod and He’s semi-inversetechnique
are appliedtoobtainexactsolutionsfornonlinearwaveequationsundertheinfluenceof
randomness. Thestochasticnatureoftheseequationsisexploredusingdifferenttypes
of randomvariables,including Laplace andGumbeldistributions. Additionally,
simulationsareprovidedtovisualizethebehavioroftheobtainedsolutionsunderdifferent
parameter settings
Chapter 1:Introduction
This chapterintroducesfundamentalconceptsrelatedtorandomvariables,stochastic
processes,andBrownianmotion,alongwithkeystatisticaldistributionsusedinthe
thesis. Ithighlightsthesignificantadvancementsinappliedmathematicsoverthelast
fiftyyears,particularlyinenergy-relatedapplications,whichhavedriventhedevelop-
mentofsophisticatedcomputingtechniques.Thechapteremphasizestheimportanceof
nonlinear partialdifferentialequations(NPDEs)inmodelingvariousnaturalphenomena
across multiplescientificdisciplines,includingsolidstatephysics,quantummechanics,
and chemicalphysics.Italsodiscussestheroleoffirst,second,andthird-orderNPDEs
in modelingnonlinearwaves,diffusionprocesses,anddispersivewavemotion.Addition-
ally,thechapterintroducessolitarywavesandsolitons,explainingtheirsignificancein
understanding complexphysicalsystems.Thediscussionsetsthefoundationforfurther
exploration ofstochasticnonlinearpartialdifferentialequations(SNPDEs),aimingto
modelreal-worldsystemswithgreateraccuracy..
Chapter 2:MathematicalMethods
This chapterintroducesthefundamentalconceptsofstochasticmodelinganditssignif-
icance innonlinearsystems.Itdiscussesthenecessityofusingstochasticratherthan
deterministic approachestostudynonlinearmodels,astheyaccountforuncertainties
more effectively.Thechapteralsoprovidesanoverviewof Brownianmotion, whichis
a keystochasticprocess,anditsapplicationsinphysics,chemistry,andengineering.Ad-ditionally,itintroducesthestochasticunstablenonlinearSchr¨odingerequation(UNLSE)
and outlinesthemainobjectivesofthisthesis.
Chapter 3:AnalyticalSolutionsforNonlinearWaveEquations
This chapterfocusesonanalyticalmethodsforsolvingnonlinearwaveequations.The
RB sub-ODEtechnique is appliedtoobtainexactsolutionsforthe cubic Boussinesq
equation and the modifiedequal-width(MEW)equation. Thesemodelsdescribe
long wavesinshallowwaterandwavepropagationinnonlineardispersivemedia,respec-
tively.Theobtainedsolutionsincludesoliton,periodic,andrationalwaveforms,which
are visualizedusingtwo-andthree-dimensionalgraphs.
Chapter 4:StochasticNonlinearSchr¨odingerEquations
This chapterexplorestheimpactofstochasticperturbationsonthenonlinearSchr¨odinger
equation (NLSE).TheUNLSEisstudiedundertheinfluenceof additivenoise and
uncertaintyinitsparameters.Thechapterpresentsvariousnumericalandanalytical
methodsusedinrecentresearchonstochasticNLSEs.Inaddition,thesignificanceofthe
Laplace andGumbelrandomvariablesinmodelinguncertaintyisdiscussed.
Chapter 5:StochasticSolutionsforUNLSE
This chapterapplies He’s semi-inversetechnique to solvethestochasticUNLSE.
Examines theinfluenceofrandomnessonsolitarywavepropagation,consideringboth
Laplace andGumbelrandomvariables. Themeanoftheserandomsolutionsis
calculated andnumericalsimulationsareprovidedtoillustratethestochasticbehaviorof
the system.Thefindingshighlighttheadvantagesoftheproposedapproachinreducing
computational complexitywhileobtainingaccuratesolutions.
Keywords
<Statistical distributions, nalyticalSolutionsforNonlinearWaveEquations, StochasticNonlinearSchr¨odingerEquations, StochasticSolutionsforUNLSE
Citation
22