Investigation of the deterministic and stochastic waves for some nonlinear partial differential equations with their applications

dc.contributor.advisorM.E, Fares
dc.contributor.advisorM.A, Shohaly
dc.contributor.authorAlbalawi, Sami M
dc.date.accessioned2025-09-07T04:49:31Z
dc.date.issued2025
dc.descriptionThis thesisfocusesonthestudyofnonlinearstochasticmodels,particularlythosearis- ing inmathematicalphysics.Stochasticmodelinghasbecomeincreasinglyessentialin understanding real-worldphenomena,whereuncertaintyplaysacrucialrole.Unlike deterministic models,stochasticmodelspreservealltypesofuncertaintiesandprovide more realisticsimulations.Theworkpresentedinthisthesisinvestigatestheimpactof stochasticeffectsonnonlinearevolutionequations,withaspecificfocusonthe unstable nonlinear Schr¨odingerequation(UNLSE) and othernonlinearwavemodels. Variousmathematicaltechniquesareemployedtoderiveanalyticalsolutionsforthese stochasticmodels.The RB sub-ODEmethod and He’s semi-inversetechnique are appliedtoobtainexactsolutionsfornonlinearwaveequationsundertheinfluenceof randomness. Thestochasticnatureoftheseequationsisexploredusingdifferenttypes of randomvariables,including Laplace andGumbeldistributions. Additionally, simulationsareprovidedtovisualizethebehavioroftheobtainedsolutionsunderdifferent parameter settings Chapter 1:Introduction This chapterintroducesfundamentalconceptsrelatedtorandomvariables,stochastic processes,andBrownianmotion,alongwithkeystatisticaldistributionsusedinthe thesis. Ithighlightsthesignificantadvancementsinappliedmathematicsoverthelast fiftyyears,particularlyinenergy-relatedapplications,whichhavedriventhedevelop- mentofsophisticatedcomputingtechniques.Thechapteremphasizestheimportanceof nonlinear partialdifferentialequations(NPDEs)inmodelingvariousnaturalphenomena across multiplescientificdisciplines,includingsolidstatephysics,quantummechanics, and chemicalphysics.Italsodiscussestheroleoffirst,second,andthird-orderNPDEs in modelingnonlinearwaves,diffusionprocesses,anddispersivewavemotion.Addition- ally,thechapterintroducessolitarywavesandsolitons,explainingtheirsignificancein understanding complexphysicalsystems.Thediscussionsetsthefoundationforfurther exploration ofstochasticnonlinearpartialdifferentialequations(SNPDEs),aimingto modelreal-worldsystemswithgreateraccuracy.. Chapter 2:MathematicalMethods This chapterintroducesthefundamentalconceptsofstochasticmodelinganditssignif- icance innonlinearsystems.Itdiscussesthenecessityofusingstochasticratherthan deterministic approachestostudynonlinearmodels,astheyaccountforuncertainties more effectively.Thechapteralsoprovidesanoverviewof Brownianmotion, whichis a keystochasticprocess,anditsapplicationsinphysics,chemistry,andengineering.Ad-ditionally,itintroducesthestochasticunstablenonlinearSchr¨odingerequation(UNLSE) and outlinesthemainobjectivesofthisthesis. Chapter 3:AnalyticalSolutionsforNonlinearWaveEquations This chapterfocusesonanalyticalmethodsforsolvingnonlinearwaveequations.The RB sub-ODEtechnique is appliedtoobtainexactsolutionsforthe cubic Boussinesq equation and the modifiedequal-width(MEW)equation. Thesemodelsdescribe long wavesinshallowwaterandwavepropagationinnonlineardispersivemedia,respec- tively.Theobtainedsolutionsincludesoliton,periodic,andrationalwaveforms,which are visualizedusingtwo-andthree-dimensionalgraphs. Chapter 4:StochasticNonlinearSchr¨odingerEquations This chapterexplorestheimpactofstochasticperturbationsonthenonlinearSchr¨odinger equation (NLSE).TheUNLSEisstudiedundertheinfluenceof additivenoise and uncertaintyinitsparameters.Thechapterpresentsvariousnumericalandanalytical methodsusedinrecentresearchonstochasticNLSEs.Inaddition,thesignificanceofthe Laplace andGumbelrandomvariablesinmodelinguncertaintyisdiscussed. Chapter 5:StochasticSolutionsforUNLSE This chapterapplies He’s semi-inversetechnique to solvethestochasticUNLSE. Examines theinfluenceofrandomnessonsolitarywavepropagation,consideringboth Laplace andGumbelrandomvariables. Themeanoftheserandomsolutionsis calculated andnumericalsimulationsareprovidedtoillustratethestochasticbehaviorof the system.Thefindingshighlighttheadvantagesoftheproposedapproachinreducing computational complexitywhileobtainingaccuratesolutions.
dc.description.abstractThis thesisfocusesonthestudyofnonlinearstochasticmodels,particularlythosearis- ing inmathematicalphysics.Stochasticmodelinghasbecomeincreasinglyessentialin understanding real-worldphenomena,whereuncertaintyplaysacrucialrole.Unlike deterministic models,stochasticmodelspreservealltypesofuncertaintiesandprovide more realisticsimulations.Theworkpresentedinthisthesisinvestigatestheimpactof stochasticeffectsonnonlinearevolutionequations,withaspecificfocusonthe unstable nonlinear Schr¨odingerequation(UNLSE) and othernonlinearwavemodels. Variousmathematicaltechniquesareemployedtoderiveanalyticalsolutionsforthese stochasticmodels.The RB sub-ODEmethod and He’s semi-inversetechnique are appliedtoobtainexactsolutionsfornonlinearwaveequationsundertheinfluenceof randomness. Thestochasticnatureoftheseequationsisexploredusingdifferenttypes of randomvariables,including Laplace andGumbeldistributions. Additionally, simulationsareprovidedtovisualizethebehavioroftheobtainedsolutionsunderdifferent parameter settings Chapter 1:Introduction This chapterintroducesfundamentalconceptsrelatedtorandomvariables,stochastic processes,andBrownianmotion,alongwithkeystatisticaldistributionsusedinthe thesis. Ithighlightsthesignificantadvancementsinappliedmathematicsoverthelast fiftyyears,particularlyinenergy-relatedapplications,whichhavedriventhedevelop- mentofsophisticatedcomputingtechniques.Thechapteremphasizestheimportanceof nonlinear partialdifferentialequations(NPDEs)inmodelingvariousnaturalphenomena across multiplescientificdisciplines,includingsolidstatephysics,quantummechanics, and chemicalphysics.Italsodiscussestheroleoffirst,second,andthird-orderNPDEs in modelingnonlinearwaves,diffusionprocesses,anddispersivewavemotion.Addition- ally,thechapterintroducessolitarywavesandsolitons,explainingtheirsignificancein understanding complexphysicalsystems.Thediscussionsetsthefoundationforfurther exploration ofstochasticnonlinearpartialdifferentialequations(SNPDEs),aimingto modelreal-worldsystemswithgreateraccuracy.. Chapter 2:MathematicalMethods This chapterintroducesthefundamentalconceptsofstochasticmodelinganditssignif- icance innonlinearsystems.Itdiscussesthenecessityofusingstochasticratherthan deterministic approachestostudynonlinearmodels,astheyaccountforuncertainties more effectively.Thechapteralsoprovidesanoverviewof Brownianmotion, whichis a keystochasticprocess,anditsapplicationsinphysics,chemistry,andengineering.Ad-ditionally,itintroducesthestochasticunstablenonlinearSchr¨odingerequation(UNLSE) and outlinesthemainobjectivesofthisthesis. Chapter 3:AnalyticalSolutionsforNonlinearWaveEquations This chapterfocusesonanalyticalmethodsforsolvingnonlinearwaveequations.The RB sub-ODEtechnique is appliedtoobtainexactsolutionsforthe cubic Boussinesq equation and the modifiedequal-width(MEW)equation. Thesemodelsdescribe long wavesinshallowwaterandwavepropagationinnonlineardispersivemedia,respec- tively.Theobtainedsolutionsincludesoliton,periodic,andrationalwaveforms,which are visualizedusingtwo-andthree-dimensionalgraphs. Chapter 4:StochasticNonlinearSchr¨odingerEquations This chapterexplorestheimpactofstochasticperturbationsonthenonlinearSchr¨odinger equation (NLSE).TheUNLSEisstudiedundertheinfluenceof additivenoise and uncertaintyinitsparameters.Thechapterpresentsvariousnumericalandanalytical methodsusedinrecentresearchonstochasticNLSEs.Inaddition,thesignificanceofthe Laplace andGumbelrandomvariablesinmodelinguncertaintyisdiscussed. Chapter 5:StochasticSolutionsforUNLSE This chapterapplies He’s semi-inversetechnique to solvethestochasticUNLSE. Examines theinfluenceofrandomnessonsolitarywavepropagation,consideringboth Laplace andGumbelrandomvariables. Themeanoftheserandomsolutionsis calculated andnumericalsimulationsareprovidedtoillustratethestochasticbehaviorof the system.Thefindingshighlighttheadvantagesoftheproposedapproachinreducing computational complexitywhileobtainingaccuratesolutions.
dc.format.extent64
dc.identifier.citation22
dc.identifier.urihttps://hdl.handle.net/20.500.14154/76344
dc.language.isoen
dc.publisherSaudi Digital Library
dc.subject<Statistical distributions
dc.subjectnalyticalSolutionsforNonlinearWaveEquations
dc.subjectStochasticNonlinearSchr¨odingerEquations
dc.subjectStochasticSolutionsforUNLSE
dc.titleInvestigation of the deterministic and stochastic waves for some nonlinear partial differential equations with their applications
dc.typeThesis
sdl.degree.departmentMathematics
sdl.degree.disciplineApplied mathematics
sdl.degree.grantorMansoura University
sdl.degree.nameDoctorate in Philosophy

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
SACM-Dissertation.pdf
Size:
4.67 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections

Copyright owned by the Saudi Digital Library (SDL) © 2025