Investigation of the deterministic and stochastic waves for some nonlinear partial differential equations with their applications
dc.contributor.advisor | M.E, Fares | |
dc.contributor.advisor | M.A, Shohaly | |
dc.contributor.author | Albalawi, Sami M | |
dc.date.accessioned | 2025-09-07T04:49:31Z | |
dc.date.issued | 2025 | |
dc.description | This thesisfocusesonthestudyofnonlinearstochasticmodels,particularlythosearis- ing inmathematicalphysics.Stochasticmodelinghasbecomeincreasinglyessentialin understanding real-worldphenomena,whereuncertaintyplaysacrucialrole.Unlike deterministic models,stochasticmodelspreservealltypesofuncertaintiesandprovide more realisticsimulations.Theworkpresentedinthisthesisinvestigatestheimpactof stochasticeffectsonnonlinearevolutionequations,withaspecificfocusonthe unstable nonlinear Schr¨odingerequation(UNLSE) and othernonlinearwavemodels. Variousmathematicaltechniquesareemployedtoderiveanalyticalsolutionsforthese stochasticmodels.The RB sub-ODEmethod and He’s semi-inversetechnique are appliedtoobtainexactsolutionsfornonlinearwaveequationsundertheinfluenceof randomness. Thestochasticnatureoftheseequationsisexploredusingdifferenttypes of randomvariables,including Laplace andGumbeldistributions. Additionally, simulationsareprovidedtovisualizethebehavioroftheobtainedsolutionsunderdifferent parameter settings Chapter 1:Introduction This chapterintroducesfundamentalconceptsrelatedtorandomvariables,stochastic processes,andBrownianmotion,alongwithkeystatisticaldistributionsusedinthe thesis. Ithighlightsthesignificantadvancementsinappliedmathematicsoverthelast fiftyyears,particularlyinenergy-relatedapplications,whichhavedriventhedevelop- mentofsophisticatedcomputingtechniques.Thechapteremphasizestheimportanceof nonlinear partialdifferentialequations(NPDEs)inmodelingvariousnaturalphenomena across multiplescientificdisciplines,includingsolidstatephysics,quantummechanics, and chemicalphysics.Italsodiscussestheroleoffirst,second,andthird-orderNPDEs in modelingnonlinearwaves,diffusionprocesses,anddispersivewavemotion.Addition- ally,thechapterintroducessolitarywavesandsolitons,explainingtheirsignificancein understanding complexphysicalsystems.Thediscussionsetsthefoundationforfurther exploration ofstochasticnonlinearpartialdifferentialequations(SNPDEs),aimingto modelreal-worldsystemswithgreateraccuracy.. Chapter 2:MathematicalMethods This chapterintroducesthefundamentalconceptsofstochasticmodelinganditssignif- icance innonlinearsystems.Itdiscussesthenecessityofusingstochasticratherthan deterministic approachestostudynonlinearmodels,astheyaccountforuncertainties more effectively.Thechapteralsoprovidesanoverviewof Brownianmotion, whichis a keystochasticprocess,anditsapplicationsinphysics,chemistry,andengineering.Ad-ditionally,itintroducesthestochasticunstablenonlinearSchr¨odingerequation(UNLSE) and outlinesthemainobjectivesofthisthesis. Chapter 3:AnalyticalSolutionsforNonlinearWaveEquations This chapterfocusesonanalyticalmethodsforsolvingnonlinearwaveequations.The RB sub-ODEtechnique is appliedtoobtainexactsolutionsforthe cubic Boussinesq equation and the modifiedequal-width(MEW)equation. Thesemodelsdescribe long wavesinshallowwaterandwavepropagationinnonlineardispersivemedia,respec- tively.Theobtainedsolutionsincludesoliton,periodic,andrationalwaveforms,which are visualizedusingtwo-andthree-dimensionalgraphs. Chapter 4:StochasticNonlinearSchr¨odingerEquations This chapterexplorestheimpactofstochasticperturbationsonthenonlinearSchr¨odinger equation (NLSE).TheUNLSEisstudiedundertheinfluenceof additivenoise and uncertaintyinitsparameters.Thechapterpresentsvariousnumericalandanalytical methodsusedinrecentresearchonstochasticNLSEs.Inaddition,thesignificanceofthe Laplace andGumbelrandomvariablesinmodelinguncertaintyisdiscussed. Chapter 5:StochasticSolutionsforUNLSE This chapterapplies He’s semi-inversetechnique to solvethestochasticUNLSE. Examines theinfluenceofrandomnessonsolitarywavepropagation,consideringboth Laplace andGumbelrandomvariables. Themeanoftheserandomsolutionsis calculated andnumericalsimulationsareprovidedtoillustratethestochasticbehaviorof the system.Thefindingshighlighttheadvantagesoftheproposedapproachinreducing computational complexitywhileobtainingaccuratesolutions. | |
dc.description.abstract | This thesisfocusesonthestudyofnonlinearstochasticmodels,particularlythosearis- ing inmathematicalphysics.Stochasticmodelinghasbecomeincreasinglyessentialin understanding real-worldphenomena,whereuncertaintyplaysacrucialrole.Unlike deterministic models,stochasticmodelspreservealltypesofuncertaintiesandprovide more realisticsimulations.Theworkpresentedinthisthesisinvestigatestheimpactof stochasticeffectsonnonlinearevolutionequations,withaspecificfocusonthe unstable nonlinear Schr¨odingerequation(UNLSE) and othernonlinearwavemodels. Variousmathematicaltechniquesareemployedtoderiveanalyticalsolutionsforthese stochasticmodels.The RB sub-ODEmethod and He’s semi-inversetechnique are appliedtoobtainexactsolutionsfornonlinearwaveequationsundertheinfluenceof randomness. Thestochasticnatureoftheseequationsisexploredusingdifferenttypes of randomvariables,including Laplace andGumbeldistributions. Additionally, simulationsareprovidedtovisualizethebehavioroftheobtainedsolutionsunderdifferent parameter settings Chapter 1:Introduction This chapterintroducesfundamentalconceptsrelatedtorandomvariables,stochastic processes,andBrownianmotion,alongwithkeystatisticaldistributionsusedinthe thesis. Ithighlightsthesignificantadvancementsinappliedmathematicsoverthelast fiftyyears,particularlyinenergy-relatedapplications,whichhavedriventhedevelop- mentofsophisticatedcomputingtechniques.Thechapteremphasizestheimportanceof nonlinear partialdifferentialequations(NPDEs)inmodelingvariousnaturalphenomena across multiplescientificdisciplines,includingsolidstatephysics,quantummechanics, and chemicalphysics.Italsodiscussestheroleoffirst,second,andthird-orderNPDEs in modelingnonlinearwaves,diffusionprocesses,anddispersivewavemotion.Addition- ally,thechapterintroducessolitarywavesandsolitons,explainingtheirsignificancein understanding complexphysicalsystems.Thediscussionsetsthefoundationforfurther exploration ofstochasticnonlinearpartialdifferentialequations(SNPDEs),aimingto modelreal-worldsystemswithgreateraccuracy.. Chapter 2:MathematicalMethods This chapterintroducesthefundamentalconceptsofstochasticmodelinganditssignif- icance innonlinearsystems.Itdiscussesthenecessityofusingstochasticratherthan deterministic approachestostudynonlinearmodels,astheyaccountforuncertainties more effectively.Thechapteralsoprovidesanoverviewof Brownianmotion, whichis a keystochasticprocess,anditsapplicationsinphysics,chemistry,andengineering.Ad-ditionally,itintroducesthestochasticunstablenonlinearSchr¨odingerequation(UNLSE) and outlinesthemainobjectivesofthisthesis. Chapter 3:AnalyticalSolutionsforNonlinearWaveEquations This chapterfocusesonanalyticalmethodsforsolvingnonlinearwaveequations.The RB sub-ODEtechnique is appliedtoobtainexactsolutionsforthe cubic Boussinesq equation and the modifiedequal-width(MEW)equation. Thesemodelsdescribe long wavesinshallowwaterandwavepropagationinnonlineardispersivemedia,respec- tively.Theobtainedsolutionsincludesoliton,periodic,andrationalwaveforms,which are visualizedusingtwo-andthree-dimensionalgraphs. Chapter 4:StochasticNonlinearSchr¨odingerEquations This chapterexplorestheimpactofstochasticperturbationsonthenonlinearSchr¨odinger equation (NLSE).TheUNLSEisstudiedundertheinfluenceof additivenoise and uncertaintyinitsparameters.Thechapterpresentsvariousnumericalandanalytical methodsusedinrecentresearchonstochasticNLSEs.Inaddition,thesignificanceofthe Laplace andGumbelrandomvariablesinmodelinguncertaintyisdiscussed. Chapter 5:StochasticSolutionsforUNLSE This chapterapplies He’s semi-inversetechnique to solvethestochasticUNLSE. Examines theinfluenceofrandomnessonsolitarywavepropagation,consideringboth Laplace andGumbelrandomvariables. Themeanoftheserandomsolutionsis calculated andnumericalsimulationsareprovidedtoillustratethestochasticbehaviorof the system.Thefindingshighlighttheadvantagesoftheproposedapproachinreducing computational complexitywhileobtainingaccuratesolutions. | |
dc.format.extent | 64 | |
dc.identifier.citation | 22 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14154/76344 | |
dc.language.iso | en | |
dc.publisher | Saudi Digital Library | |
dc.subject | <Statistical distributions | |
dc.subject | nalyticalSolutionsforNonlinearWaveEquations | |
dc.subject | StochasticNonlinearSchr¨odingerEquations | |
dc.subject | StochasticSolutionsforUNLSE | |
dc.title | Investigation of the deterministic and stochastic waves for some nonlinear partial differential equations with their applications | |
dc.type | Thesis | |
sdl.degree.department | Mathematics | |
sdl.degree.discipline | Applied mathematics | |
sdl.degree.grantor | Mansoura University | |
sdl.degree.name | Doctorate in Philosophy |