Blowing up Solutions for an Elliptic Problem Arising in Chemotaxis
dc.contributor.advisor | Khalil, Jiyid | |
dc.contributor.author | Alkharraz, Modhi Yousef | |
dc.date.issued | 2021 | |
dc.degree.department | Science | |
dc.degree.grantor | Qassim University | |
dc.description | في هذه الرسالة نقوم بدراسة مسألة اهليجيه شبه حرجة وحرجة لنيومان منبثقة من نظام Segel-Keller الناشئ عند الانجذاب الكيميائي ونظهر ان هنالك دائما حلا غير بديهي مركزا عند نقطة حدودية وذلك إذا كنا قريبين من الأس الحرج للمسألة | |
dc.description.abstract | This thesis is devoted to study an elliptic Neumann problem with critical nonlinearity. −∆u + µu = u N+2 N−2 +ε , u > 0 in Ω; ∂u ∂n = 0 on ∂Ω, where Ω is a smooth bounded domain in R N , N ⩾ 4, ε is small real number and µ is a constant positive function. We prove that for ε positive small, there exists a nontrivial solution which blows up to a point a ∈ ∂Ω which achieves the upper bounded of the boundary mean curvature. We also prove that when ε is negative small and Ω is not convex, there exists a nontrivial solution which blows up to a point a ∈ ∂Ω which achieves the lower bound of the boundary mean curvature. Lastly, we consider the critical case, i.e ε = 0, and µ is a small positive constant and we investigate numerical positive radial solutions on the ball. | |
dc.format.extent | 97 | |
dc.identifier.other | 7099 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14154/27112 | |
dc.language.iso | en | |
dc.publisher | Saudi Digital Library | |
dc.thesis.source | Qassim University | |
dc.title | Blowing up Solutions for an Elliptic Problem Arising in Chemotaxis | |
dc.title.alternative | حلول مركزة لمسألة ٕاهليجية ناشئة عن الانجذاب الكيميائي | |
dc.type | Thesis | |
sdl.degree.discipline | Mathematics | |
sdl.degree.name | Master's Degree |