Blowing up Solutions for an Elliptic Problem Arising in Chemotaxis

dc.contributor.advisorKhalil, Jiyid
dc.contributor.authorAlkharraz, Modhi Yousef
dc.date.issued2021
dc.degree.departmentScience
dc.degree.grantorQassim University
dc.descriptionفي هذه الرسالة نقوم بدراسة مسألة اهليجيه شبه حرجة وحرجة لنيومان منبثقة من نظام Segel-Keller الناشئ عند الانجذاب الكيميائي ونظهر ان هنالك دائما حلا غير بديهي مركزا عند نقطة حدودية وذلك إذا كنا قريبين من الأس الحرج للمسألة
dc.description.abstractThis thesis is devoted to study an elliptic Neumann problem with critical nonlinearity. −∆u + µu = u N+2 N−2 +ε , u > 0 in Ω; ∂u ∂n = 0 on ∂Ω, where Ω is a smooth bounded domain in R N , N ⩾ 4, ε is small real number and µ is a constant positive function. We prove that for ε positive small, there exists a nontrivial solution which blows up to a point a ∈ ∂Ω which achieves the upper bounded of the boundary mean curvature. We also prove that when ε is negative small and Ω is not convex, there exists a nontrivial solution which blows up to a point a ∈ ∂Ω which achieves the lower bound of the boundary mean curvature. Lastly, we consider the critical case, i.e ε = 0, and µ is a small positive constant and we investigate numerical positive radial solutions on the ball.
dc.format.extent97
dc.identifier.other7099
dc.identifier.urihttps://hdl.handle.net/20.500.14154/27112
dc.language.isoen
dc.publisherSaudi Digital Library
dc.thesis.sourceQassim University
dc.titleBlowing up Solutions for an Elliptic Problem Arising in Chemotaxis
dc.title.alternativeحلول مركزة لمسألة ٕاهليجية ناشئة عن الانجذاب الكيميائي
dc.typeThesis
sdl.degree.disciplineMathematics
sdl.degree.nameMaster's Degree

Files

Copyright owned by the Saudi Digital Library (SDL) © 2024